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A REVISED MODIFIED PARALLEL ANALYSIS (RMPA) FOR THE

CONSTRUCTION OF UNIDIMENSIONAL ITEM POOLS

BACKGROUND

The increasing popularity of Item Response Theory (IRT) (e.g. Hambleton, 1983; Hulin,

Drasgow & Parsons 1983; Lord, 1980) in educational, personnel and psychological testing

has caused a revolution in this domain. These new models enable researchers and test users to

solve efficiently otherwise intractable problems and develop many innovative testing

procedures.

Perhaps the most promising, and undoubtedly the most intriguing, one is Computerized

Adaptive Testing (CAT). The basic ideas as well as the theoretical and practical advantages of

CAT are well known and widely acknowledged (e.g. Green, 1983; Weiss, 1983). The

increasing availability and acceptance of computers in everyday life and their lower prices

make CAT a feasible alternative to traditional forms of testing.

Why is it, then, that CAT is relatively slow in replacing conventional testing procedures ? One

possible reason are the various problems related to the construction, validation and

maintenance of the large item pools required by this new testing protocol.

From a psychometric point of view one of the most interesting and challenging problems is the

assessment of the pools' dimensionality. Though multidimensional item response models

have been developed (e.g. Reckase, 1985; Sympson, 1978), most readily applicable IRT

models used today assume that the test takers responses to all items depend on a single latent

trait (ability). Thus, it is crucial to establish that any item used in estimating the examinee's

position along this ability continuum measures, in fact, the same trait. In other words, the

need to demonstrate that a given item pool is truly unidimensional is a necessary condition for

its use in CAT.

Defining and Assessing Unidimensionality

Consider a test consisting of P items selected from a larger item pool. Let Ui be the vector of n

binary responses to the test's items (taking values of I and 0 for correct and incorrect

response, respectively), generated by the ith test taker (i= 1 .. .N), and let U.i be her response

to the jth item (j= I ...n). Finally, let 0, be a vector of t latent traits characterizing the

exanunee's abilities. The strong principle of local independence (McDonaid, 196 %) states that:
n

P (U, = uil9)= 11 Pj(Uij = uiiliO) (I)
j~ I
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This principle asserts that the responses to any pair of items are statistically mutually

independent for any individual, or any subpopulation with fixed latent traits. The

dimensionality of U is, simply, the minimal number of latent traits necessary to produce a

(strong) locally independent model for U. Thus, a pool is unidimensional if responses to all its

items can be produced by unidimensional locally independent models.

Although a voluminous literature exists on the issue of unidimensionality of items and tests

(see Berger and Knol, 1990; Hattie, 1984 and 1985 for partial reviews), currently there is no

single approach which is fully satisfactory and/or universally accepted. Hattie (1984)

compiled a list of 87 measures of unidimensionality and classified them into five

nonoverlapping classes according to their underlying rationale. He distinguished between

indices based on

(i) closeness to specific answer patterns,

(ii) reliability coefficients,

(iii) principal components (PC),

(iv) factor analysis (FA) and

(v) goodness of fit to various IRT models.

Hattie questioned the theoretical rationale of indices based on response patterns and reliability

and showed empirically that the measures based on PC, FA and one parameter IRT (the Rasch

model) are outperformed by methods quantifying deviation from multi-parameter IRT models.

"Approximate" Unidimensionality

Many researchers have argued, based on theoretical and empirical observations, that purely

unidimensional tests, or pools, are quite rare ( e.g. Ackerman, 1989; Humphreys, 1985;

Reckase, Ackerman & Carlson, 1988; Traub, 1983; Yen, 1984, 1985). If, in fact,

unidimensionality is frequently violated it is important to determine the practical implications of

such violations. Following Reckase's original work (1979), several researchers (e.g.

Drasgow & Parson, 1983; Yen, 1984, 1985) have shown that unidimensional models are

quite robust under multidimensionality as long as

(i) There is a si'ngle "dominant" factor, and

(ii) Item difficulty is not confounded with dimensionality.
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These, and other similar, studies suggest that strict unidimensional pools are not necessary for

many practical applications of unidimensional IRT models (e.g. CAT). It is, however,

important to develop methods that can identify pools which are almost / practically /

Sapproximately unidimensional (i.e. they deviate from strict unidimensionality to a degree

which does not seriously affect the fit or accuracy of the unidimensional IRT model).

This is the motivation behind recent work by Stout, who developed a test of the essential

unidimensionality of a data set (Stout, 1987,1990; Nandakumar, 1991). Essential

independence is achieved if the mean covariance (conditional on Oi, the test taker's vector of t

latent traits) between all n(n-l)/2 pairs of items approaches 0 as the number of items increases

to infinity, and the essential dimensionality of a pool is the smallest number of latent traits

necessary to satisfy essential independence. Essential independence is a weaker requirement

than strong local independence and, in practice, it is obtained whenever there is a single

dominant dimension in the data (e.g. Nandakumar, 1991).

In the same spirit Drasgow and Lissak(1983) presented Modified Parallel Analysis (MPA for

short) as "a technique that can determine when an item pool is sufficiently unidimensional for

the use of IRT" (Drasgow and Lissak, 1983, page 365). Modified Parallel Analysis relies on

FA, a well understood method which is widely available to users in most statistical packages.

Thus, it is (conceptually and computationally) easier to use than Stout's methods. This study

will develop a revised and improved version of MPA.

Parallel and Modified Parallel Analysis

Parallel Analysis (PA) was proposed by Horn (1965) as an alternative to traditional factor

analytical methods for identifying the number of latent factors. The standard methods are

based on various functions of the eigenvalues of the correlation matrix. Among them, the

eigenvalues' absolute size (e.g. Kaiser, 1960), their overall pattern (e.g. Cattell, 1966), or

their distribution under the multivariate normal model (e.g. Bartlett, 1950).

The rationale behind PA is intuitively compelling, and its application is simple and

straightforward: Random correlation matrices are generated, and their eigenvalues are

extracted and averaged. The eigenvalues of the actual correlations are compared to these

means and those factors with eigenvalues larger than their counterparts from the

randomly generated data are retained. Crawford and Koopman (1973), Humphreys and

Montanelli (1975) and Zwick and Velicer (1986), among others, report that PA works well in

both Principal Components (PC) and Factor Analysis (FA). Recently Longman, Cota, Holden

and Fekken (1989) published regression equations that eliminate the need to actually generate



-6-

random matrices for each PA (for the PC case).

Parallel Analysis is used to determine the true dimensionality of a given data set, whereas in

most applications of CAT one seeks to determine whether a data set deviates significantly from

unidimensionality. Modified Parallel Analysis (Drasgow & Lissak, 1983) provides an

ingenious way of answering this question, using the rationale of PA. Its basic stages are:

(I) The intercorrelations (preferably tetrachoric) of the test's items are factor analyzed and the

eigeiivalues of the unrotated solution are calculated.

(2) A "parallel" unidimensional data set is generated by an IRT model. This data set parallels

the observed one along all its attributes: It has an equal number of examinees with identical

abilities, and it has the same number of items with identical parameters. Since responses

are generated by an unidimensional IRT model satisfying the strong local independence

principle the data set is, by definition, unidimensional.

(3) The (tetrachoric) correlations of the parallel data set are factor analyzed, and the

eigenvalues of the unrotated solution are calculated.

(4) The dimensionality of the pool is assessed by comparing the magnitude of the second

eigenvalues of the two data sets: If the actual value (calculated in stage i) is "sufficiently

close" to the one obtained from the parallel data set (calculated in stage 3), the test is

unidimensional.

Drasgow and Lissak (1983) recommend that the items' communalities be estimated by the

largest (absolute) off-diagonal correlation, and suggest an ad hoc procedure for imputation of

tetrachoric correlations for those cases where the regular algorithm fails to converge. They

also report five empirical studies providing strong empirical support for the procedure.

Eigenvalue based factor analytical techniques are not always successful in recovering the true

dimensionality of binary data and, consequently, can't always distinguish between

unidimensional and multidimensional data sets (e.g. Collins, Cliff, McCormick and Zatlin,

1986; Hattie, 1984; Knol and Berger, 1991; Roznowsky, Tucker & Humphreys, 1991;

Zwick and Velicer, 1986). Thus it may seem surprising that some of the same measures

perform very well in the framework of PA, and MPA. It is important to stress that the key to

the success of these methods is their comparative nature. Whatever deficiencies these statistics

have, they affect equally the results of the two data sets. Both PA and MPA focus on, and
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highlight, whatever differences exist between the empirical and parallel data sets above and

beyond the systematic biases that the FA based measures may share.

Thus, in Hattie's (1984) typology MPA should not be considered a "factor analytic approach".

In fact, it is closer to the "measures of fit to IRT models". MPA is a general method for

assessing the similarity, or closeness, between two parallel data sets (one of which is known

to be unidimensional), in which the similarity is quantified by some of the statistics usually

employed in FA.

A critique of MPA

Modified Parallel Analysis suffers from a few technical limitations. In this section we

describe these limitations and the problems they may cause in applying the method:

(i) MPA is a randomized procedure, i.e. its results depend to a certain degree on a random

process which is totally unrelated to the process of interest, namely, the selection of the

parallel data set. Thus, with small enough samples, researchers applying exactly the same

procedure to the same set of data may reach different conclusions because of the variance

between the random data sets generated in their simulations.

(ii) The simulated and the empirical data sets are equated along most important dimensions and

any discrepancy between their eigenvalues can ,supposedly, be attributed to the

multidimensionality of the empirical matrix. Yet, the communalities are estimated in a

purely empirical fashion separately for each data set, introducing another important

difference between them. This factor may bias (in an unknown direction and to an

unknown degree) the comparative analysis.

(iii) MPA is a heuristic procedure, i.e. it lacks a measure of sampling variability for the formal

assessment of the closeness of the critical statistic (the second eigenvalue) obtained from

the unidimensional and the empirical solutions.

Other important limitations of MPA are:

(iv) It compares only the second pair of eigenvalues of the two matrices. This choice lacks a

solid theoretical or empirical justification, and it may miss differences between the other

eigenvalues (especially the third).
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(v) MPA is too limited in its scope. The technique provides a global omnibus test of the

hypothesis concerning the pool's unidimensionality. It lacks, however, a mechanism to

follow up rejections of the hypothesized pattern, by eliminating some items and identify a

unidimensional subset of the pool.

A REVISED MODIFIED PARALLEL ANALYSIS (RMPA)

In this section we outline a revised procedure (RMPA) which extends and generalizes the

MPA. The revised method offers solutions to the technical problems described above

and incorporates them into the existing framework of MPA. Originally, MPA was developed

as a global procedure that distinguishes between (essentially) unidimensional tests and

multidimensional ones. RMPA complements this aspect by a second stage which allows one

to extract unidimensional subsets from larger, potentially multidimensional, pools.

To solve the first problem we replace the random generation of a parallel unidimensional

population by the theoretical derivation of the expected corielations under the assumptions of

(i) local independence, (2) unidimensionality of the parameter space and (3) the three

parameter logistic model (e.g. Lord, 1980). The probability of a correct response for item j by

a test taker with (a single) ability ei is given by P(Uij = I10i) or, in a shorter notation, PJi:

Pji = Cj +I - ci 2
I + exp{-I.7ai(0i- bj)) (2)

where a. is the item's discrimination parameter, b. is the item's difficulty and c. is its pseudo-
J J J

guessing probability (see Hambleton, 1983 or Lord, 1980 for details).

Under these assumptions the expected number of correct answers to any pair of arbitrary

items, j and k, in a random sample of N examinees is:

N N(j= Pji and fk= ' Pki (3)

w~ i=I

Under the assumption of local independence, the expected number of correct answers to both

items, j and k, is:
N

fjk= g PjiPki. (4)i=3
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Given f and the two marginals, f and fk, the expected 2x2 contingency table can be

constructed, and the expected tetrachoric correlation can be estimated by standard methods

(e.g. by solving a polynomial using the Newton Raphson method, as suggested by Kendall &

Stuart 1979, pages 324-327). All expectations are (as in the original MPA) conditional upon

the abilities and item parameters shared by the two data sets. The calculation can be further

refined when the true distribution of the unidimensional abilities (0i) in the population is

known. In these cases, the summation is replaced by integration across all values of 0i

weighted according to the probability density of the ei, to yield the matrix of expected

tetrechoric correlations in the population.

To solve the second problem we replace the separate estimation of the communalities in the

two data sets by the expected tetrachoric correlation between (hypothetical) experimentally

independent administrations of any item under the assumptions of (I) local independence,

(2) unidimensional ability and (3) a three parameter logistic item curve. This procedure

amounts to estimating the items' communalities by their expected test-retest reliabilities. It is

well known (e.g. Lord & Novick, 1968; Mulaik, 1972) that a measure's reliability provides an

upper bound to its communality. The estimation procedure is just a special case of the

technique described above for the calculation of the expected correlation. More specifically, if

we let j=k, Equation 4 is reduced to:

N

fJJ P•i (4a)

The solution of the third problem relies on a data analytic procedure known as "jacknifing"

(see Arvesen and Salsburg, 1975, Miller, 1974 or Mosteller & Tukey, 1977 for partial

reviews) I. Assume that the original nxn correlation matrix between the test's items is strictly

unidimensional. By eliminating one item at a time (i.e. deleting a row, and the corresponding

column, from the original matrix) we obtain n submatrices of order (n-I )x(n- I)

which, by definition, are also unidimensional. Furthermore, it is easy to show that under the
"one factor model" (i.e. a matrix of rank one), the average first eigenvalue of these n

submatrices, scaled by a factor of n/(n- 1), is an unbiased estimate of the first eigenvalue of the

original intact matrix.

An useful and important consequence of the "eliminate one item at a time" procedure is that it

provides a simple method for assessing the impact, or influence2 , of any single item on the
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test's eigenvalues. The logic of the MPA procedure predicts that, under unidimensionality, the

two matrices will have equal eigenvalues. For example, it is generally accepted, and it was

confirmc.d empirically by Drasgow & Lissak(1983), that the first eigenvalue (XI) is

approximately equal in the observed and the expected matrices, regardless of the

dimensionality of the observed responses. Thus, except for sampling error, the ratio of the

two eigenvalues, RL , should be:

RLI = X 1(observed)/X 1(expected) = 1 (5)

Furthermore, under unidimensionality, the eigenvalues of the n submatrices of the two data

sets will be similar, will have equal variances and will be highly correlated. Finally, the

remo, al of any given item from the pool will affect the observed and the expected data sets in

identical fashion and to an equal degree. Thus, equality (5) should also hold in all n

submatrices obtained by eliminating one item at a time. Let ?,,be the first eigenvalue of the

submatrix obtained after the deletion of item i, and let RL-' be the ratio of the eigenvalues from

the two parallel data sets. Then, for all items Oi= I ...n), the ratio of the jacknifed

eigenvalues should equal the ratio of the original values:

RLU1 = •Xi (observed)/fki(expected) = RLI . (6)

If the responses are unidimernsional, similar results are expected to hold for the second, third,

and all subsequent eigenvalues. If, on the other hand, the observed responses violate

unidimensionality, the analysis of the two data sets should yield differential results. For

example, Drasgow and Lissak(1983) based the original MPA on the prediction that the second

eigenvalue of the observed matrix will be larger than its counterpart from the parallel

unidimensional data set:

RL 2= X2(observed)/ ?,2(expected) > i (7)

If the data are generated by a multidimensional model we expect the mean of the n second

eigenvalues extracted from the observed submatrices to be larger, and their variance to

be higher, than their counterparts from the expected data set. Depending on the type and

degree of deviation from unidimensionality, the correlation between the observed and

expected values can be low (or even negative). Furthermore, the eigenvalues of the observed

responses will be more sensitive to the removal of the foreign (or "contaminating") items,

Since the expected matrix is unidimensional, its eigenvalues should not be affected



considerably when any arbitrary item is removed. However, when a contaminating

item is removed from a multidimensional test, the data set becomes closer to unidimensionality

and its eigenvalues should decrease. For example, in a test of length r=50 with 8 foreign

items (8/50=16% contamination), after the removal of such an item, the level of contamination

is reduced to (7/49=)14%. Thus, whenever a contaminating item is eliminated the matching

eigenvalues should be more similar to each other than in those cases in which a regular

(noncontaminating) item is removed. Consequently, the ratio of the eigenvalues should be

closer to unity in these instances.

To summarize, for any given data set, the ratio between the first eigenvalues, RL,, in the two

data sets can be used as a benchmark against which one can assess and test the ratios derived

from the second and third eigenvalues (RL 2 and RLy3 respectively). At the global (i.e. test or

pool) level, this approach is attractive because the behavior of RL 2 and RL3 is assessed by a

data based index which is more sensitive to, and reflects, the peculiarities and idiosyncrasies of

the specific test being examined. At the local (i.e. item) level, this procedure provides a natural

way of ranking, and scaling, the items according to their deviation from the pattern expected

under unidimensionality. These properties can be used to develop a procedure for testing the

global dimensionality of the observed responses, and a method of selecting unidimensional

pools. In the next section we describe the technical details of such a testing procedure.

The "gap test"

As described above, we propose to jacknife the two parallel correlation matrices and calculate

the eigenvalues of all n submatrices. To facilitate the comparison of the two data sets we

calculate, for all items (i=1 ...n) and for the first k eigenvalues (typically k= 1,2,3 should

suffice), the ratio of the two matched eigenvalues:

RL' = Vk(observed)/qX(expected) (8)

The global ratio RLI, as well as the individual RL' (i= I. .n), are insensitive to the

dimensionality of the observed data s-t. Their empirical distribution will be used to test the

hypothesis that the ratios of the second and third eigenvalues behave similarly. Formally, we

wish to test that F{ RL-' = F{ RLU I, and F{ RLU3 = F{ RLU), where F.} stands for the

distribution of the relevant statistic. The alternative hypothesis is that the ratios are distributed

differentially.

We are particularly interested in the case where an essentially unidimensional data set is

contaminated by a second (sometimes called "nuisance") ability. We speculated earlier, that
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removal of such contaminating items will affect differentially the two matched eigenvalues

When analyzing the correlations from the observed responses we exp,.: !. observe two

distinct clusters of eigenvalues --- from the unidimensional and the contaminating pool,

respectively --- separated by a substantial jump". No parallel clustering and separation is

expected in the corresponding eigenvalues of the matrix of expected correlations.

To detect such unusual jumps we adopt a procedure described by Wainer and Schacht (1978)

under the name of "gapping" since its goal is to detect unusually large gaps in strings of

ordered values. The first step in this procedure is to rank order the values in descending order

and to calculate the (n- 1) gaps, gi' by subtracting each observation from the immediately

previous (i.e. larger) one. The gaps are then weighted by a set of logistic weights to yield

weighted gaps, yi. These weights were selected to account and compensate for the fact that,

typically, observations are more dense (hence should be overweighted) near the center and

more sparse (and should be underweighted) in the tails of the distribution. Formally:

yi = fi (n - i) (9)

Finally, these values are standardized by division by y., the midmean (i.e. the mean of the

central 50% values) of the weighted gaps. Thus, the standardized weighted gaps (SWGs

for short), z, can be expressed as:

zi= y/y,. (10)

Zero gaps indicate that two adjacent observations are equal, and unit gaps indicate that the

distance between two observations is equal to the gaps' midmean. By definition, all gaps are

non-negative but are unbounded from above. Wainer and Schacht (1978) suggest that z-

values greater than 2.25 indicate "unusually" large gaps. The probability of observing gaps

this wide by chance is approximately 0.03 under the normal distribution, but this value was

shown by Wainer and Schacht (1978) to work quite well for a variety of symmetric t

distributions with tails larger than the normal.

We will use this procedure to detect the location of the gap separating the items from the two

pools, on the basis of ratios of the matched eigenvalues, RL• (k > I). Thus, the hypothesis

will be tested by comparing MAX(Z71 ), the largest SWG, with a critical rejection threshold.

However, in the absence of precise information regarding the form of the distribution of these

ratios, and the multiplicity of tests involved, it is not sufficient to rely on the 2.25 universal

rule of thumb proposed by Wainer and Schacht. Instead, we find it necessary to develop more
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general (and more conservative3 ) rejection rules.

There are various ways of deriving critical reject in points for this decision: If the distribution

of RLli is known (e.g. normal), the critical values can be obtained from the appropriate table.

Otherwise, one can estimate the desired percentiles (.01, .05, etc.) from the distribution of

RL';. Finally, one can use a version of Chebyshev inequality (e.g. Stuart and Ord, 1987, page

110). The regular Chebyshev inequality states that the probability of firding a value located

more than K standard deviations (SDs) from the population's mean is smaller than I/K2, for

any distribution with finite moments; A tighter version, invoking the additional assumptions

that the distribution is symmetric and unimodal, yields a lower upper limit (4/9K2), for the

probability of the same event 4

The decision, to reject H0, will be based on a comparison with a critical threshold, T(z ). The

threshold is derived from the distribution of the ratios of the first eigenvalue, RLI', in the same

data set. Specifically, for k=2,3 we will reject H0 if:

MAX(Zk,) > T(z1 ) = (MI + KS 1)

where M, and Sn are the mean and SD, respectively, of the SWGs, zfi, calculated from the

ratios of first set of matched eigenvalues, RL-'. For the three possible distributional

assumptions described above, and with probability of Type I errors fixed at 0.01,0.05 and

0.10, K takes the values described in the following table:

Prob (Type I error)

Assumption 0.01 0.05 0.10

Normality 2.50 2.00 1.65

Symmetry + unimodality 6.67 3.00 2. 1 I

None 10.00 4.50 3A --

The normal case is fully consistent with Wainer and Schacht's 2.25 universal rule of thumb,

and needs no further elaboration. It is included in the table, primarily, as a benchmark against

which the more conservative Chebyshev rules can be evaluated. We will have more to say

about the various rejection rules later in the paper.
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A ten - step summary of RMPA

(1) Fo ivng the administration of a test consisting of n items to a sample of N test takers,

estimate

(i) the three parameters of each item,

(ii) the ability of each examinee, and

(iii) the nxn matrix of tetrachoric correlations between the test's items.

(2) Using the ability and item parameters estimated from the observed responses, calculate the

nxn matrix of expected tetrachoric correlations between the items.

(3) The (unit) diagonal values of the observed and expected correlation matrices are replaced

by the expected item test-retest reliabilities, and the first k (k= 1,2,3) eigenvalues of the two

matrices are extracted.

Except for a few technical refinements the previous steps are identical to, and allow the

application of, MPA.

(4) Jacknife both correlation matrices by removing one item (row and corresponding column)

at a time, and extract the first k (k= 1,2,3) eigenvalues of all the (n- I )x(n- 1) submatrices.

(5) The corresponding eigenvalues of the observed and expected submatrices are matched and

k ratios (k= 1,2,3) of the form:

RL-k= 4(observed)/ 4(expected) (8)

are calculated for each item (i= I...n).

(6) The n ratios in each of the k sets are rank ordered, SWGs are calculated (Wainer and

Schacht, 1978), and the largest SWGs, MAX(zk,), are identified.

(7) Using information (Mean, SD, test of normality, etc.) from the distribution of the SWGs

based on the first set of matched eigenvalues determine T(zd), the critical threshold for

detecting unusually wide gaps (supposedly distinguishing between items from the

primary and contaminating pools).

(8) Compare MAX(z2i) and MAX(z 3d), the largest SWGs based on the second and third set

of matched eigenvalues, with T(z1) the critical rejection threshold.
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(9) If MAX(z2i) and/or MAX(z3N) > T(zd), i.e. there is a significant gap in either distribution

*t of ratios, eliminate those items which are located above the significant gap(s) 5.

(10) Let m! denote the number of items eliminatea (min > 0) after this first pass through the

data. Repeat stages 4 - 9 with the reduced (n-m,)x(n-m,) correlation matrices. This

second analysis may lead to the elimination of additional (say m2) items. Repeat the

procedure with the remaining items, and stop when the test (step 8) fails to detect items to

be rejected.

AN EMPIRICAL STUDY OF RMPA

Method

In this section we report results of an empirical study designed to test RMPA. Like most other

studies in this area we simulated artificial test results by combining real item parameters and a

set of reasonable assumptions regarding the distribution of abilities in the population of test

takers. For the purpose of this study we contaminated a large unidimensional pool by (various

proportions of) responses generated by a second (nuisance) ability correlated (at various

levels) with the first. The efficiency of the RMPA was assessed by its ability to identify

correctly the contaminating items and, consequently, partition the test into its two basic

components.

We expect this procedure to be most efficient in cases of approximate unidimensionality. In

other words, it should detect accurately relatively low levels of contamination, but not mixtures

of two (equal) abilities. We also predict that the accuracy of the detection will be inversely

related to the correlation between the two abilities involved.

We generated 20 distinct "artificial tests". The following characteristics were fixed for all the

tests:

n = test length = 80 items;

N = sample size = 2000 examinees;

t = number of abilities = 2.
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The following variables were manipulated across tests:

p = proportion of contaminating items = 0%, 10%, 25% or 50% (p=0% is a a strictly,

uncontaminated, unidimensional test and the other three cases represent low, medium

and high levels of contamination);

r = the correlation between 0, and 02, the two abilities = 0.0, 0.5, 0.7 (the three values are

approximately equally spaced in terms of r2).

Replications: All combinations of p and r were replicated twice (i.e. with different seeds for

the generation of the abilities, and different item parameters). In the sequel the two replications

are labeled "B" and "R".

This design is summarized in the 10 cells of the following table. With the exception of the

control condition (p--0, r=0), this can be viewed as a factorial crossing of two independent

variables repeated twice.

r=correlation p=% of contamination
between abilities 0 10 25 50

0.0 X X X X

0.5 - X X X

0.7 - X X X

The items for half the tests (replication "R") were randomly selected from the item bank of a

test of English as a Foreign Language (EFL). This test was developed and is routinely used

by the National Institute for Testing and Evaluation (NITE) as part of the Psychometric

Entrance Test (PET) which is administered to all applicants to universities in Israel. The item

parameters were estimated under the three parameter logistic model (Equation 2) using

responses from approximately 7,000 examinees who took the test in 1988. The estimation

was performed using the NITEST parameter estimation software (Cohen & Bodner, 1989).

These parameter estimates for the n=80 items will henceforth be referred to as "true

parameters". They are listed in Appendix t.
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The items for the other tests (replication "B") were generated artificially, according to some

distributional assumptions: The discrimination parameters (a's) were sampled from a normal

t distribution with a mean of 1.1 and a s.d. of 0.3; The difficulty parameters (b's) were

obtained from a normal distribution with a mean of 0 and a s.d. of 0.8; The pseudo-guessing

parameters (c's) are taken from a uniform distribution over the range 0. 1 - 0.3. The values of

the three parameters were sampled, from the respective sources, independently. The "true

parameters" of the "B" tests are listed in Appendix 2.

Table 1 summarizes the information regarding the two sets of true parameters. The two tests

are equally difficult, but vary with respect to other aspects. The discrimination parameters of

the real items ("R") have a higher mean and variance (ma=1.33 and a=0351) than the artificial

ones ("B") (ma=l.12 and s.7-0.25). On the average, it is easier to guess in the artificial test

(me--0.2 vs. 0.16). Finally, whereas the parameters of the artificial items are uncorrelated (by

design), the values of the EFL items parameters are moderately correlated.

Insert Table I about here

Abilitie

All samples include N-2000 simulated "respondents". First we generated four mutually

uncorrelated sets of abilities (T, A, A2 and A3): We sampled 8000 independent observations

from the standard (0, 1) normal distribution and randomly assigned them to the four sets.

Correlated abilities were generated by calculating:

T(r) = r .T + V-r2.A (I I)

where A, stand for AI, A2 or Ay3 and r is the desired correlation (0.0, 0.5, 0.7) between the

new set of abilities, T(r), and the reference set, T. Thus T(0), T(.5), T(.7) are sets of N=2000

normally distributed abilities which correlate 0.0. 0.5 and 0.7, respectively, with T.

Respgnses

Four sets of unidimensional response vectors were generated. Each set was simulated with a

different set of abilities (T, T(0), T(.5) or T(.7) I, and all responses were generated with the

"true" item parameters. The response vectors were simulated with the NITECAT software

package (Cohen, Bodner & Ronen, 1989), which implements the process described by

Drasgow and Lissak (1983).
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The vectors generated with the T abilities are considered the "original" responses based on the

dominant ability. Contaminated responses were obtained by replacing the original responses

on p% of the items (randomly selected) with the corresponding responses generated by one of

the other samples of abilities. Note that for the case of r=O this procedure simulates a two-

dimensional "noncompensatory" model (e.g. Ackerman, 1989, Sympson, 1978), whereas the

other cases (r > 0) simulate "compensatory" models (e.g. Ackerman, 1989, Reckase, 1985).

ParametLr estimation

In each of the artificial tests the three parameters of the n=80 items were estimated with the

NITEST program Cohen & Bodner, 1989). These are the various sets of "estimated

parameters", to be used ýn the generation of the expected correlations.

Consistent with the massive literature on this topic (e.g. Dorans & Kingston, 1985; Miller &

Oshima, 1992; Oshima & Miller, 1992), we found that the estimates of the b's and c's were

not affected by the contamination. However, the estimates of the a's (the discrimination

parameters) are sensitive to the level of contamination. Appendix 3 presents the mean

estimates of the a parameters for items loaded on the dominant and nuisance trait. The pattern

and magnitude of the estimates is consistent with other studies in the literature: The estimates

for items loaded on the dominant ability are hardly affected, whereas the discrimination

measures of the contaminating items are reduced considerably. The magnitude of this
"shrinkage" is related to the level of contamination and the correlation between the two factors.

A very similar pattern is observed when comparing communality estimates (expected test-retest

reliabilities of the items). The results of this comparison are summarized in Appendix 4.

Results

The data were analyzed according to the ten steps procedure outlined in the summary above.

We report the main results according to the same sequence.

Standard MPA

At the conclusion of the third stage one can perform the standard MPA, prescribed by

Drasgow and Lissak (1983). Table 2 summarizes these results. The table displays the first

three eigenvalues of both correlation matrices, as well as their ratios.

Insert Table 2 about here
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There is a clear and consistent pattern in the data which can be summarized by three

observations:

(i) The first eigenvalues are, practically, equal in the two matrices and their ratio is,

essentially, 1. There are no discernible differences between the 18 contaminated data sets

and, in this respect, they are indistinguishable from the two uncontaminated tests.

(ii) In all contaminated tests, the second eigenvalue of the observed matrix is larger than its

expected counterpart. Consequently, their ratio is greater than unity, as predicted by

Drasgow & Lissak (1983). The ratio is a monotonically increasing function of p, the level

of contamination, and a monotonically decreasing function of r, the inter-ability

correlation.

(iii) The ratio of the third pair of eigenvalues is also greater than one. In fact, in most cases it

is greater than the second ratio. The third ratio is not systematically related to r, the inter-

ability correlation. However, it increases monotonically as a function of p, the level of

contamination. The sharpest effect is obtained for highly (r=0.7) correlated, and the

weakest effect is found for uncorrelated (r=0.0) abilities.

RMPA

At the conclusion of the fifth stage one can perform an informal RMPA by examining the

eigenvalues of the jacknifed parallel matrices. Table 3 displays means, and standard

deviations, of the first three eigenvalues extracted from the jacknifed submatrices. All the

values in the table are based on n=80 matrices of order (n-I1)=79. Note that the mean values

are related to the eigenvalues from table 2 through multiplication by a scale factor of nI(n- 1)=

80/79.

Insert Table 3 about here

Table 4 presents ratios of the means, and the variances, of the three jacknifed eigenvalues of

the 20 tests.

Insert Table 4 about here
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There is a close correspondence between these mean ratios and the ratios presented in table 2,

and the same three basic conclusions apply here, as well. The ratios of the variances follow a

similar, but not identical, pattern:

(i) The variances of the first eigenvalues are, on the average, very close to each other and their

ratio is close to unity. The only exceptions are the cases I r=O, p=50 1, which represent

mixtures of two unidimensional half-tests involving uncorrelated abilities.

(ii) In most cases (and on the average) the variance of the second (jacknifed) eigenvalues in the

observed matrices is higher than in the expected one. The effect is most pronounced in the

case of the independent traits (r=O), and for moderate or high levels of contamination

(p=25 and 50, respectively).

(iii) In all 20 tests the variances of the third (jacknifed) eigenvalues are substantially higher in

the observed matrices. The effect is much stronger than for the second eigenvalue, but

there is no systematic pattern of change across levels and types of contamination.

Table 5 presents the correlations between the matched jacknifed eigenvalues for the 20 tests.

Each correlation is based on n=80 observations.

Insert Table 5 about here

The pattern of results is clear and consistent with our expectations:

(i) There is a high (almost perfect) linear correlation for the first eigenvalue in most tests. The

single exception is the (Rep=R, r=O, p-=50 1 case, which is a mixture of two uncorrelated

(unidimensional) half-tests.

(ii) In all cases of moderate and high contamination (p=25 and 50, respectively) the

correlations based on the second and third eigenvalue are low, or negative.

(iii) In most cases of low contamination (p=10) the correlations based on the second eigenvalue

are high (almost like for the first eigenvalue), but the correlations based on the third

eigenvalue are always low, or negative.
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This pattern indicates that, as suggested by Drasgow and Lissak (1983) and others, the first

eigenvalues of the two parallel matrices are practically indistinguishable, across all types and

levels of contamination. However, contrary to Drasgow and Lissak's speculation, not all the

differences between the two data sets can be detected by comparing the second pair of

eigenvalues. The means, variances and correlations of the jacknifed values seem to suggest

that in some cases of low contamination (p=O. 10) violations from unidimensionality can only

be detected by examining the third pair of eigenvalues.

Riection Thresholds

Table 6 presents seven rejection thresholds calculated from the distribution of the first ratio in

the 20 tests. The first is, simply, the 2.25 value proposed by Wainer and Schacht (1978).

The other six are obtained by crossing two confidence levels (95% and 99%) with three rules

of detection --- an empirical value, a value calculated by the "tight" (i.e. assuming

unidimodality and symmetry) Chebyshev inequality, and a value derived from the

unconstrained Chebyshev inequality.

Insert Table 6 about here

In all tests, and for both confidence levels, the empirical percentile is more liberal than the

corresponding Chebyshev bounds. Thus, the three rules can be ranked, from the most to the

least conservative, identically for all tests and for both levels of confidence:

Unconstrained Chebyshev > Constrained Chebyshev > Empirical

The 2.25 value is, in all cases, more extreme than the empirical 95th percentile, but smaller

than all the Chebyshev bounds. In most cases (13/20) the 99th empirical percentile is above

2.25. One remarkable and reassuring aspect of this table is the relatively low variance of the

bounds across the various conditions and replications. This indicates that the ratio of the first

pair of jacknifed eigenvalues has a relatively stable distribution across the levels and types of

contamination.

To further examine the performance of the rejection thresholds we calculated the proportion of

SWGs which were found to be higher than the threshold, in the various tests. The results for
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the 18 contaminated tests are summarized in Appendix 5. The proportions are summarized as

a function of the eigenvalue examined (first, second or third), the level of contamination and

the inter-trait correlation. The overall trend is for the number of unusually large gaps to

increase monotonically as a function of the eigenvalue (it is lowest for the first and highest for

the third), and the level of contamination, and decrease monotonically with r, the inter-ability

correlation. The actual rates of change vary from one threshold to another.

The most important issue, from a practical point of view, is to choose the "best" threshold for

detection of wide gaps. To address this issue we focus on the performance of the various

indices in the uncontaminated (p=O) case. Table 7 displays the proportion of SWGs exceeding

the various indices for the three ratios. Since this is a strictly unidimensional test, we expect

this proportion to be invariant for all three ratios and not to exceed its nominal confidence level

(95% or 99%). Clearly, 2.25 and the empirical percentiles fail the invariance requirement and

the 95% constrained Chebyshev bound is too liberal for the third ratio. In light of these results

we conclude that is best to identify as "unusually wide gaps" those values that exceed the 95%

unconstrained, or the constrained 99% Chebyshev bodnds. We will focus primarily on

rejections with 99% confidence. However, for completeness sake, we will report in the sequel

results according to all the seven thresholds.

Insert Table 7 about here

Partition of the Tests

Tables 8a - 8c list the maximal SWGs observed in the distributions of the three ratios for each

test. The tables also display the pattern of significance achieved by this maximal SWG, and its

location. The columns labeled "significance" simply count how many (of the increasingly

stringent) thresholds were exceeded in each family of tests. The fixed 2.25 criterion is either

surpassed (I in the table) or not (0). In the 95% and 99% columns, a I indicates that the

observed value is greater than the empirical percentile but lower than both Chebyshev bounds;

a value of 2 describes a situation where the actual value is greater than the constrained (but

smaller than the unconstrained) Chebyshev bound, and a value of 3 denotes a case where the

maximal gap is larger than the most severe rejection rule. Our previous results (see table 7)

dictate to interpret as "significant" values of 2 (at 99%), or values of 3 (at 95%).



- 23 -

The location of the gals is described by reporting the number of items above, and below, it.

Recall that according to the logic Af RMPA the contaminating items should have lower (i.e.

closer to unity) ratios. We rank ordered the ratios in ascending order, so these items are

expected to cluster "above" the gap. As a rule, we expect the proportion of item above the gap

to match, approximately, the proportion of contamination in the specific test. Since decisions

about rejection can be based on the second and/or third eigenvalue, we summarize in table 9

the pattern of results for each test across all three ratios.

We reject the null hypothesis of unidimensionality if:

(1) The number of items "above the gap" < n/2 AND

(2) The Maximal SWG of the second AND/OR the third ratio is greater than the designated

rejection threshold.

We examine three rejection rules with decreasing levels of conservatism: (1) 99% according to

an unconstrained Chebyshev inequality, (2) 99% according to a constrained Chebyshev

inequality, and (3) 95% according to the unconstrained Chebyshev inequality.

Insert Tables 8a - 8c and 9 about here

As expected, there are no significant gaps in the distribution of the first ratio but, in most tests,

the largest SWG in the distribution of the second and/or third ratio is significant. We examine

these significant gaps according to the three valid rejection thresholds:

The most stringent approach requires a SWG to exceed the 99% threshold derived from a

regular Chebyshev inequality. Seven tests have gaps larger than this threshold (three in

the distribution of the second ratio, two in the distribution of the third and one in both). Five

of these tests have low (p= 10) level of contamination, one is moderately (p=2 5 ) aind the other

is highly (p=50) contaminated.

In seven of the remaining tests the Max(SWG) exceeds the 99% threshold derived from a

constrained (unimodality + symmetry) Chebyshev inequality. One is uncontaminated (p--O),

one is slightly (p= 10), three are moderately (25%) and two are highly (p=50) contaminated.
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All the other six tests reach significance according to an unconstrained 95% Chebychev bound.

This group includes one uncontaminated (p--O) test as well as two moderately (25%) and three

highly (p=50) contaminated cases.

All six cases with low (p=10) contamination are significant at the 99% level (five of them by

the most severe criterion). In all six cases the gap separates the top 10% items from the bottom

90%. It appears !hat the procedure works well for this type of contamination.

Only three of the highly contaminated tests (p=50) are significant at 99%. More important,

however, is the fact that in all six tests the widest gap is located at the bottom of the

distribution. Although the numbers vary slightly across tests, the proportion of items above

the gap is always greater than 80%. Clearly, the gap test does not work well for a mixture of

two half tests.

The pattern of results is slightly more complex in the case of moderate (p=25) contamination,

and it depends on the level of the inter-ability correlation: For both tests with uncorrelated

(rO0) abilities, and one of the tests with moderately correlated (r=0.5) abilities, the significant

gap (99%) in the distribution of the second ratio separates the upper 25% items from the rest of

the test. In the other test with r=0.5 the gap between the top 25% of the items and the lower

75% is significant at the 95% level. Finally, for the tests involving highly correlated abilities

(r--0.7), the maximal gap is located at the lower end of the distribution (69 and 72 items above

the gap). In both cases the second largest gap distinguishes between the (most) contaminating

items and the original ones. Thus, the gap test operates well only for cases with low inter-

ability correlations.

To summarize, RMPA found a significant gap in the distribution of the ratios of matched

eigenvalues in al the tests examined. In 14 tests the gap was significant at 99% and in the

othet; six at 95%. A significant gap located in the upper half of the distribution (i.e. with fewer

items above the gap than bellow it) is taken as a strong indication of violation of

unidimensionality and prescribes elimination of all items above the gap. The ten tests

identified by this criterion include all those with low contamination (p=10), as well as the

moderately contaminated ones (p=25 ), with moderate level of inter-ability correlation (r <0.7).

In the sequel we focus only on these 10 shortened tests. To facilitate interpretation of the

results, we attach plots of the 10 relevant distributions of standardized weighted gaps. The

original (l-p)n items are plotted as "*"s and the pn contaminating items are plotted as "C"s.
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Note that in all plots:

(i) the contaminating items are clustered at one end of the distribution, and

(ii) there is an unusually large gap separating this cluster from the bulk of the items. This gap

can be detected in the raw gaps, but it is more pronounced in the standardized weighted

form.

Insert Figures -10 about here

The quality of the technique is assessed by its ability to detect the contaminating items and

remove them, while retaining the original ones. Table 10 summarizes this analysis for the 10

short tests. For each one we report the hit rate (i.e. contaminating items rejected correctly)

and the false alarm rate (i.e. original items rejected incorrectly). The figures are very

impressive ---- for all the tests with ,=10%, the hit rate is 100% and for the tests with p=25%

it is 95%. Both figures are accompanied by false alarm rates close to 0. This impression can

be also verified in their ROC curves (e.g. Green & Swets, 1973). These curves plot the hit

rate against the false alarm rate for 20 equally spaced rejection thresholds. Each figure

includes a curve based on the ratio of the first pair of eigenvalues and one based on the ratio of

the second or third (the one that reached significance in that particular test). In all ten cases the

latter curve stochastically dominates the former. Furthermore, at practically all points the

procedure does a perfect job of detecting the contaminating items.

Insert Table 10 and Figures I 1 - 20 about here

Re-examination of the shortened tests

Having shortened 10 tests according to the results of the initial RMPA we repeated steps 4 - 9

of the procedure. The second iteration verifies the unidimensionality of the shortened tests: If

the first stage is successful in removing all sources of contamination, we do not expect to

detect any significant gaps in this second round.

Tables I I and 12 report the results of the MPA and the RMPA of the shortened tests. A quick

comparison with tables 2 and 4 (summarizing the same results for the original full tests)

reveals that all major sources of multidimensionality were eliminated. The ratios of the second

eigenvalues, and the ratios of their variances, are close to unity (We assume that a heuristic
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MPA wc'uld also declare all these tests unidimensional). The third ratios are somewhat higher

but are, considerably, lower than those of the original tests,

Insert Tables I I and 12 about here

The SWGs of the remaining items were calculated, new rejection thresholds were derived, and

the gap test was applied again 6. The results are presented in Tables 13a- 13c (parallel in

structure and notation to tables 8a-8c).

Insert Tables i 3a - 13c about here

As expected, none of the ratios based on the first pair of eigenvalues is significant (according

to the 99% Chebyshev bounds). We found significant gaps in the distribution of the second

ratio for four tests, and three of them also revealed significant gaps in the third ratio.

However vith one exception, the significant gaps are in the lower tail of the distribution.

Therefore, they are not indicative of violations of unidimensionality. The only exception was

the {Rep=B r=0.7 p= 10) test. In this case the second iteration of the RMPA prescribes

removal of five additional items. All contaminated items were successfully detected by the first

iteration so these are five "false alarms". The final test consists of 66 unidimensional items

(instead of 72).
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SUvMMARY

The goal of the current research was to develop a practical, yet theoretically sound and

computationally feasible, tool for testing the global dimensionality of large item pools and

eliminating items which cause violations of the pool's unidimensionality. Both goals are

attained in the unified framework of RMPA.

MPA was developed by Drasgow and Lissak (1983) as an approximate method for testing the

unidimensionality of item pools. It relies on a heuristic comparison of a statistic (the second

eigenvalue) derived from the matrix of items' intercorrelations and the corresponding value

extracted from a "parallel" matrix generated by a unidimensional, and locally independent,

model (in our case the three parameter logistic model).

RMPA is based on a similar comparative logic, but improves upon MPA in several ways:

(1) It alleviates some minor technical limitations, through the use of expected correlations

under unidimensionality;

(2) It implements a formal test for comparing the observed data set with its parallel (and

unidimensional) counterpart.

(3) Contingent upon the results of this test, it provides a method for identifying and

eliminating items which violate the test's unidimensionality.

The testing and elimination procedures are based on the "remove one item at a time" principle.

This methodology allows one to assess the contribution of each item to the

test's eigenvalues. Furthermore, one can determine the variance and distribution of these

values and analyze the differential impact of any given item in the observed and parallel

matrices. Items which have a "significantly" larger impact in the observed data set violate

unidimensionality.

The detection of these items relies on a conservative version of Wainer & Schacht's (1978)
"gapping" test. The largest (first) eigenvalues of the observed and expected matrices are

practically identical in all cases, regardless of the level of correlation between the two abilities

and the degree of contamination. Therefore, we used the distribution of their ratio to determine

rejection thresholds for the ratio of the second and third eigenvalues. These thresholds are

based on conservative Chebyshev bounds, and are specifically tailored to each test.
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RMPA was tested in several simulations of unidimensional item pools which were

contaminated by various proportions of items loaded on a secondary nuisance ability. The

method was highly successful in identifying low (10%) levels of departure from

unidimensionality, and in detecting moderate (25%) deviations from unidimensionality when

the abilities were not highly (r < 0.7) correlated. In these cases over 90% of the contaminating

items were identified and less than 1% of the original items were eliminated erroneously. The

procedure failed, and should not be applied, in tests which are equal mixtures (50%) of two

abilities.

We conclude by pointing out that the logic of MPA and RMPA can be generalized to other

statistics of closeness between the two data sets. For example, it might be interesting to apply

it to indices derived from non linear factor analysis (e.s. McDonald, 1982).
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FOOTNOTES

(1) Strictly speaking "jacknifing" refers to an analysis in which observations (i.e. respondents)
are eliminated one at a time from the sample. In this case, we eliminate variables (items) in

a similar fashion. Several item analysis computer programs use a similar approach in order
to identify subscales with maximal reliability.

(2) Ii, the sample influence function (Devlin, Gnanadesikan and Kettenring, 1975; Hampel,
1974) of parameter, T, is given by:

Ii = (n-1)(T - T~i),

where n is the number of items, and T-i is an estimate of the parameter T obtained after the
elimination of item i. Note that Ii is, simply, a linear transformation of T1.i

(3) The term "conservative" is used here according to the standard convention in statistical
inference, i.e. a procedure is more conservative than its competitor if it invokes a more

stringent criterion in rejecting the null hypothesis.

(4) Strictly speaking, Chebyshev inequality requires knowledge of the para'meters (mean and
variance) of the population of interest. However, Saw, Yang and Mo (1984) have shown

that sample estimates of these parameters can be used, with very little loss of precision, in
moderately large samples.

(5) Occasionally a large (and significant) gap will be detected in the lower tail of the
distribution, i.e. separating the bulk of the data from a minority of items with unusual low

ratios of observed/expected jacknifed eigenvalues. Clearly, these cases are not relevant for

our goal.

(6) Since the procedure is data driven, we opt not to use the thresholds values employed in the

first stage. Thus, when analyzing a test consisting of (n - mi) items one should obtain the

same results, and reach the same conclusions, whether it is treated as "an original" or "a
reduced" test.
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Table 1:

Means, standard deviations and correlations of the two sets of item parameters

Rep=B Rep=R

Parameter n Mean Std. Dev. Parameter n Mean Std. Dev.

a 80 1.123 0.245 a 80 1.328 0.511
b 80 0.172 0.873 b 80 -0.026 0.985
c 80 0.202 0.057 c 80 0.161 0.098

Correlations Correlations

a b C a b c

a 1.000 0.090 -0.196 a 1.000 0.518 0.397
b 0.090 1.000 -0.260 b 0.518 1.000 0.754
c -0.196 -0.260 1.000 r 0.397 0.754 1.000
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Table 2:

Modified Parallel Analysis (MPA) of 20 tests:
The first three eigenvalues for the observed and
expected matrices, and their ratios

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

Rep r p Exp Obs Obs/Exp Exp Obs Obs/Exp Exp Obs Obs/Exp

B - 0 24.34 25.10 1.03 1.79 1.78 0.99 0.17 0.67 4.02
B 0.0 10 22.03 22.71 1.03 1.62 2.55 1.58 0.17 1.66 9.72
B 0.0 25 18.15 18.80 1.04 1.43 5.59 3.92 0.15 1.53 10.17
B 0.0 50 11.93 12.58 1.05 0.61 12.01 19.77 0.08 0.85 10.35
B 0.5 10 22.72 23.55 1.04 1.66 1.78 1.07 0.18 1.66 9.13
B 0.5 25 12.93 20.77 1.04 1.46 3.87 2.65 0.16 1.54 9.75
B 0.5 50 17.76 18.71 1.05 0.92 6.05 6.60 0.07 1.07 14.38
B 0.7 10 23.31 24.16 1.04 1.66 1.73 1.04 0.18 1.26 7.09
B 0.7 25 21.27 22.13 1.04 1.46 2.30 1.58 0.15 1.55 10.51
B 0.7 50 19.91 20.82 1.05 1.18 3.67 3.11 0.09 1.34 14.26

R - 0 26.20 26.23 1.00 3.47 3.22 0.93 0.36 0.63 1.78
R 0.0 10 23.59 23.84 1.01 2.84 2.86 1.01 0.25 2.57 10.20
R 0.0 25 19.57 19.81 1.01 2.38 6.20 2.60 0.20 2.33 11.91
R 0.0 50 12.23 12.90 1.05 1.45 12.20 8.39 0.15 1.77 11.53
R 0.5 10 23.68 24.14 1.02 2.76. 2.76 1.00 0.28 1.90 6.69
R 0.5 25 21.45 21.90 1.02 2.48 4.31 1.74 0.25 2.45 9.70
R 0.5 50 19.30 19.88 1.03 1.79 6.35 3.55 0.13 1.93 14.89
R 0.7 10 24.45 24.86 1.02 2.88 2.87 1.00 0.30 1.18 4.01
R 0.7 25 22.91 23.30 1.02 2.64 3.16 1.20 0.23 2.28 10.09
R 0.7 50 21.78 22.25 1.02 2.32 3.89 1.68 0.17 2.39 14.17

Notes:
All results based on n=80 items and N=2000 respondents.
Exp = Derived from matrix of expected correlations
Obs = Derived from matrix of observed correlations.
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Table 3:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Means and standard deviations of the first three eigenvalues of the jacknifed
submatrices (observed and expected)

Eigenvalue I Eigenvalue 2 Eigenvalue 3
Rep r p Source Mean SD Mean SD Mean SD

B - 0 Exp 24.036 0.122 1.764 0.029 0.165 0.004
Obs 24.786 0.118 1.756 0.027 0.664 0.009

B 0.0 10 Exp 21.752 0.145 1.598 0.026 0.168 O.004
Obs 22.429 0.147 2.515 0.103 1 637 0.027

B 0.0 25 Exp 17.920 0.163 1.409 0.027 0.148 0.004
Obs 18.563 0.169 5.519 0.143 1.507 0.027

B 0.0 50 Exp 11.778 0.136 0.600 0.013 0.081 0.002
Obs 12.432 0.158 11.842 0.165 0.842 0.016

B 0.5 10 Exp 22.437 0.133 1.640 0.027 0.179 0.004
Obs 23.255 0.128 1.769 -. 036 1.630 0.038

B 0.5 25 Exp 19.685 0.136 1.443 0.026 0.156 0.004
Obs 20.507 0.128 3.818 0.084 1.525 0.027

B 0.5 50 Exp 17.536 0.089 0.906 0.014 0.073 0.002
Obs 18.472 0.085 5.972 0.035 1.053 0.019

B 0.7 10 Exp 23.023 0.125 1.640 0.026 0.175 0.004
Obs 23.858 0.119 1.713 0.025 1.241 0.043

B 0.7 25 Exp 21.008 0.126 1.437 0.024 0.145 0.003
Obs 21.850 0.122 2.267 0.048 1.526 0.027

B 0.7 50 Exp 19.660 0.103 1.164 0.019 0.093 0002
Obs 20.564 0.101 3.625 0.025 1.326 0.021

R - 0 Exp 25.874 0.128 3.424 0.040 0.351 0.006
Obs 25.899 0.132 3,178 0.036 0.628 0.007

R 0.0 10 Exp 23.292 0.155 2.808 0.040 0.249 0.006
Obs 23.547 0.160 2.829 0.035 2.531 0.113

R 0.0 25 Exp 19.330 0.174 2.354 0.039 0.193 0.005
Obs 19.561 0.182 6.121 0.149 2.301 0.035

R 0.0 50 Exp 12.078 0,142 1.436 0,031 0.152 0.004
Obs 12.735 0.187 12.045 0.175 1751 0.037

R 0.5 10 Exp 23,389 0.141 2.726 0.038 0.281 0.006
Obs 23.835 0,138 2,726 0.034 1.876 0.078

R 0.5 25 Exp 21.181 0.152 2.449 0.038 0.249 0.006
Obs 21.629 0.143 4.251 0.084 2.415 0.035

R 0.5 50 Exp 19.063 0,107 1.763 0.023 0.128 0.004
Obs 19.636 0.101 6.263 0.037 1.906 0.025

R 0.7 10 Exp 24.145 0.136 2.839 0.038 0.291 0.006
Obs 24.552 0.132 2,835 0,033 1.166 0.043

R 0.7 25 Exp 22.627 0.138 2.605 0.037 0.223 0.005
Obs 23.006 0.132 3.123 0.040 2.252 0.033

R 0.7 50 Exp 21.504 0.118 2.292 0.030 0.166 0.004
Obs 21.970 0.1 16 3.843 0.027 2.357 0.030

Notes:
All results based on n=80 items and N=2000 respondents.
Exp = Derived from matrix of expected correlations
Obs = Derived from matrix of observed correlations.
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Table 4:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Ratio of means and variances of eigenvalues of the jacknifed submatrices
(Ratio = observed / expected)

Eigenvalue I Eigenvalue 2 Eigenvalue 3
Rep r p Mean Var Mean Var Mean Var

B - 0 1.031 0.933 0.995 0.884 4.030 6.007
B 0.0 10 1.031 1.034 1.574 15.449 9.730 44.102
B 0.0 25 1.036 1.074 3.917 28.726 10.187 52.047
B 0.0 50 1.056 1.355 19.748 151.159 10.350 83.432
B 0.5 10 1.036 0.920 1.078 1.779 9.084 80.253
B 0.5 25 1.042 0.885 2.646 10.454 9.763 44.765
B 0.5 50 1.053 0.909 6.594 5.886 14.379 133.295
B 0.7 10 1.036 0.916 1.045 0.908 7.086 116.778
B 0.7 25 1.040 0.934 1.578 3.836 10.524 62.910
B 0.7 50 1.046 0.955 3.114 1.681 14.278 92.026

R - 0 1.001 1.054 0.928 0.804 1.790 1.296
R 0.0 10 1.011 1.067 1.008 0.776 10.183 370.061
R 0.0 25 1.012 1.094 2.600 14.554 11.918 53.081
R 0.0 50 1.054 1.746 8.387 31.775 11.527 78.033
R 0.5 10 1.019 0.946 1.000 0.786 6.685 165.024
R 0.5 25 1.021 0.888 1.736 4.773 9.705 36.368
R 0.5 50 1.030 0.892 3.554 2.554 14.892 45.144
R 0.7 10 1.017 0.944 0.999 0.770 4.004 44.388
R 0.7 25 1.017 0.916 1.199 1.205 10.082 42.093
R 0.7 50 1.022 0.966 1.677 0.763 14.166 68.059

Notes:
All results based on n=80 items and N=2000 respondents.
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Table 5:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Correlations of eigenvalues of the observed and the expected jacknifed submatrices

Rep r p EvI Ev 2 Ev3 Rep r p EvI Ev 2 Ev3

B - 0 0.996 0.888 0.650 R - 0 0.976 0.956 0.195
B 0.0 10 0.995 -0.237 0.603 R 0.0 10 0.995 0.963 -0.147
B 0.0 25 0.996 -0.337 0.655 R 0.0 25 0.996 -0.414 0.306
B 0.0 50 0.981 -0.459 -0.049 R 0.0 50 -0.641 0.537 0.321
B 0.5 10 0.997 -0.256 0.299 R 0.5 10 0.998 0.968 -0.129
B 0.5 25 0.998 -0.320 0.593 R 0.5 25 0.996 -0.320 0.394
B 0.5 50 0.990 -0.180 0.310 R 0.5 50 0.996 -0.007 0.218
B 0.7 10 0.997 0.863 -0.111 R 0.7 10 0.998 0.968 -0.111
B 0.7 25 0.996 -0.311 0.608 R 0.7 25 0.995 0.350 0.140
B 0.7 50 0.997 -0.206 0.508 R 0.7 50 0.996 0.060 0.127

Notes:
All results based on n=80 items and N=2000 respondents.
Ev = Eigenvalue

Ia
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Table 6:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Seven detection thresholds based on the distribution of the standardized
Weighted Gaps (SWGs) based on the ratio of the first observed and expected
jacknifed eigenvalues

Threshold
SWG 95% 99%

Rep r p Mean S.D. 2.25 Emp UChe Cheb Emp UChe Cheb

B - 0 0.94 0.49 2.25 1.89 2.42 3.17 2.38 4.24 5.88
B 0.0 10 0.91 0.58 2.25 1.94 2.67 3.54 2.58 4.81 6.76
B 0.0 25 0.97 0.52 2.25 1.96 2.54 3.32 2.87 4.45 6.19
B 0.0 50 0.84 0.56 2.25 2.07 2.53 3.37 3.09 4.59 6.46
B 0.5 10 0.90 0.42 2.25 1.61 2.15 2.77 1.92 3.67 5.06
B 0.5 25 0.96 0.53 2.25 2.01 2.56 3.36 2.93 4.52 6.30
B 0.5 50 0.97 0.51 2.25 1,84 2.50 3.26 2.26 4.37 6.07
B 0.7 10 0.98 0.50 2.25 1.89 2.48 3.23 2.80 4.31 5.97
B 0.7 25 0.95 0.57 2.25 2.13 2.65 3.50 2.66 4.73 661
B 0.7 50 0.89 0.52 2.25 1.92 2.45 3.23 2.13 4.35 6.08

B Mean 0.93 0.52 2.25 1.93 2.49 3.27 2.56 4.40 6.14

R - 0 0.b5 0.44 2.25 1.65 2.27 2.93 2.12 3.89 5.36
R 0.0 10 0.99 0,56 2.25 1.85 2.66 3.50 3.40 4.72 6.58
R 0.0 25 0.94 0.54 2.25 1.90 2.56 3.37 2.65 4.54 6.33
R 0.0 50 0.79 0.51 2.25 1.77 2.30 3.06 2.47 4.16 5.84
R 0.5 10 0.99 0.48 2.25 1.82 2.42 3.14 1.93 4.18 5.78
R 0.5 25 0.95 0.52 2.25 2.03 2.52 3.31 2.24 4.44 6.18
R 0.5 50 0.93 0.53 2.25 1.82 2.53 3.33 3.00 4.48 6.25
R 0.7 I0 1.07 0.61 2.25 2.16 2.90 3.81 2.87 5.12 7.14
R 0.7 25 0.92 0.45 2.25 1.95 2.28 2.95 2.23 3.93 5.43
R 0.7 50 0.96 0.47 2.25 1.85 2.38 3.09 2.03 4.12 5.70

R Mean 0.95 0.51 2.25 1.88 2.48 3.25 2.49 4.35 6.06

Mean 0.94 0.52 2.25 1.90 2.49 3.26 2.53 4.38 6.10

Notes:
All results based on n=80 itemrw and N=2000 respondents.
Emp = Empirical distribution
UChe = Chebyshev bound assuming unimodality
Cheb = Chebyshev bound
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Table 7:

Revised Modified Parallel Analysis (RMPA):
Proportion of Standardized Weighted Gaps (SWGs) exceeding each of the seven
thresholds in the uncontaminated unidimensional test

Threshold
95% 99%

Eigenvalue 2.250 Emp UChe Cheb Emp UChe Cheb

1 0.006 0.051 0.000 0.000 0.013 0.000 0.000
2 0.082 0.177 0.063 0.019 0.070 0.006 0.000
3 0.120 0.215 0.108 0.038 0.120 0.006 0.000

Mean 0.069 0.148 0.057 0.019 0.068 0.004 0.000

Notes:
All results based on n=80 items and N=2000 respondents.
Emp = Empirical distribution
UChe = Chebyshev bound assuming unimodality
Cheb = Chebyshev bound
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Table 8a:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (First eigenvalue)

Significance* No. of items

Rep r p Gap Max(SWG) 2.25 95% 99% Below Above

B - 0 0.00007800 2.37665 1 1 1 40 40
B 0.0 10 0.00011536 2.58303 1 1 1 29 51
B 0.0 25 0.00017863 2.87133 1 2 ! 52 28
B 0.0 50 0.00074733 3.09437 1 2 1 46 34
B 0.5 10 0.00007026 1.92493 0 1 1 42 38
B 0.5 25 0.00023166 2.93434 1 2 1 20 60
B 0.5 50 0.00011191 2.25905 1 1 1 49 31
B 0.7 10 0.00011347 2.80103 1 2 1 35 45
B 0.7 25 0.00059257 2.66357 1 2 1 76 4
B 0.7 50 0.00035381 2.12819 0 1 1 76 4

R - 0 0.00013665 2.12450 0 1 1 30 50
R 0.0 10 0.00083803 3.39892 1 2 1 4 76
R 0.0 25 0.00019422 2.65083 1 2 1 22 58
R 0.0 50 0.00513373 2.47295 1 2 1 40 40
R 0.5 10 0.00004417 1.92817 0 1 1 33 47
R 0.5 25 0.00010552 2.24198 0 1 1 38 42
R 0.5 50 0.00017510 2.99795 1 2 1 28 52
R 0.7 10 0.00010866 2.87002 1 1 1 16 64
R 0.7 25 0.00(09185 2.22529 0 1 1 33 47
R 0.7 50 0.00017596 2.02883 0 1 1 7 73

*Note:
I -> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3--> Max(SWG) > Chebyshev

SI
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Table 8b:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (Second eigenvalue)

Significance* Nn. of items

Rep r p Gap Max(SWG) 2.25 95% 99% Below Above

B - 0 0.002948 4.6028 1 3 2 13 67
B 0.0 10 0.154001 10.3842 1 3 3 72 8
B 0.0 25 0.058056 5.5693 1 3 2 61 19
B 0.0 50 0.420034 2.9129 1 2 0 6 74
B 0.5 10 0.061734 7.9202 1 3 3 72 8
B 0.5 25 0.020733 3.9763 1 3 1 62 18
B 0.5 50 0.016864 2.7078 1 2 1 30 50
B 0.7 10 0.017799 3.6832 1 3 1 78 2
B 0.7 25 0.017849 4.2707 1 3 1 64 16
B 0.7 50 0.061186 2.6536 1 2 1 3 77

R - 0 0.002074 2.6308 1 2 1 4 76
R 0.0 10 0.001358 3.1794 1 2 0 10 70
R 0.0 25 0.041428 5.1730 1 3 2 60 20
R 0.0 50 0.063916 7.3824 1 3 3 15 65
R 0.5 10 0.002657 2.7704 1 2 1 4 76
R 0.5 25 0.032784 6.7929 1 3 3 61 19
R 0.5 50 0.027717 3.0870 1 2 1 7 73
R 0.7 10 0.000493 2.7074 1 1 0 23 57
R 0.7 25 0.005675 2.7842 1 2 1 71 9
R 0.7 50 0.005415 2.7835 1 2 1 19 61

*Note:
1--> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev

9L
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Table 8c:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (Third eigenvalue)

Significance* No. of items

Rep r p Gap Max(SWG) 2.25 95% 99% Below Above

B - 0 0.197155 5.0647 1 3 2 2 78
B 0.0 10 0.407039 3.5361 1 2 I 1 79
B 0.0 25 0.087976 4.3483 1 3 1 9 71
B 0.0 50 0.065372 3.5205 1 3 I 12 68
B 0.5 10 0.110290 3.4420 1 3 1 73 7
B 0.5 25 0.138565 4.4914 1 3 1 6 74
B 0.5 50 0.237589 5.5091 1 3 2 9 71
B 0.7 10 0.184939 7.1549 1 3 3 71 9
B 0.7 25 0.140215 5.1461 1 3 2 8 72
B 0.7 50 0.116452 3.3573 1 3 i 7 73

R - 0 0.013257 3.6044 1 3 1 9 71
R 0.0 10 0.419092 9.4241 1 3 3 72 8
R 0.0 25 0.115029 4.1520 1 3 1 10 70
R 0.0 50 0.225673 8.3301 1 3 3 10 70
R 0.5 10 0.287058 10.3919 1 3 3 72 8
R 0.5 25 0.118107 5.3490 1 3 2 12 68
R 0.5 50 0.464085 4.3802 1 3 1 3 77
R 0.7 10 0.111553 6.4281 1 3 2 72 8
R 0.7 25 0.072746 3.5625 I 3 1 11 69
R 0.7 50 0.272261 4.7821 1 3 2 7 73

*Note:
I-> Max(SWG) > Empirical percentile
2--> Max(SWG) > Chebyshev + unimodality
3--> Max(SWG) > Chebyshev
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Table 9:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gaps (SWGs) and significance according to all
eigenvalues

Max (SWG) 2.25+ 95%* 99%*

Rep r p ZI Z2 Z3 123 123 123

B - 0 2.38 4.60 5.06 1 1 I 133 122
B 0.0 10 2.58 10.38 3.54 I1 1 132 131
B 0.0 25 2.87 5.57 4.35 I1 i 233 121
B 0.0 50 3.09 2.91 3.52 1 1 1 223 101
B 0.5 10 1.92 7.92 3.44 01 1 133 131
B 0.5 25 2.93 3.98 4.49 1 11 233 1 1 1
B 0.5 50 2.26 2.71 5.51 1 1 1 123 1 12
B 0.7 10 2.80 3.68 7.15 1 1 I 233 1 13
B 0.7 25 2.66 4.27 5.15 1 1 1 233 1 12
B 0.7 50 2.13 2.65 3.36 011 123 1 1i1

R - 0 2.12 2.63 3.60 01 1 123 1 11
R 0.0 10 3.40 3.18 9.42 i 1 1 223 103
R 0.0 25 2.65 5.17 4.15 I 1 1 233 121
R 0.0 50 2.47 7.38 8.33 1 1 1 233 133
R 0.5 10 1.93 2.77 10.39 01 1 123 1 13
R 0.5 25 2.24 6.79 5.35 01 1 133 132
R 0.5 50 3.00 3.09 4.38 1 1 1 223 1 11
R 0.7 10 2.87 2.71 6.60 1 11 1 13 102
R 0.7 25 2.23 2.78 3.56 01 1 123 1 11
R 0.7 50 2.03 2.78 4.78 011 123 1 12

Note: *

I --> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3--> Max(SWG) > Chebyshev

+ 1 -- > Max(SWG) > 2.25
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Table 10:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Total number of items eliminated and accuracy of the elimination procedure

Items eliminated

Rep r p Total % of % of Significant
"hits" "false alarms" Eigenvalue

B 0.0 10 8 100 0 2
H 0.5 10 8 100 0 2
B 0.7 10 9 100 1 3

R 0.0 10 8 100 0 3
R 0.5 10 8 100 0 3
R 0.7 10 8 100 0 3

Mean 8.2 100 0.2

B 0.0 25 19 95 0 2
*B 0.5 25 18 90 0 2

R 0.0 25 20 100 0 2
R 0.5 25 19 95 0 2

Mean 19 95 0

Mean - 98 0.1

Note:
Tests shortened by 99% criterion
* These tests shortened by a 95% criterion
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Table 11:

Modified Parallel Analysis (MPA) of 10 short tests:
The first three eigenvalues for the observed and expected matrices, and their ratios

Eigenvalue I Eigenvalue 2 Eigenvalue 3

Rep r p Exp Obs Obs/Exp Exp Obs Obs/Exp Exp Obs Obs/Exp

B 0.0 10 21.86 22.71 1.04 1.62 1.65 1.02 0.17 0.62 3.64
B 0.0 25 17.89 18.78 1.05 1.42 1.48 1.05 0.14 0.56 3.86
B 0.5 10 21.95 22.71 1.03 1.65 1.65 1.00 0.18 0.62 3.51
B 0.5 25 18.00 18.85 1.05 1,40 1.49 1.06 0.15 0.58 3.89
B 0.7 10 21.49 22.27 1.04 1.58 1.61 1.01 0.17 0.62 3.63

R 0.0 10 23.35 23.84 1.02 2.84 2.85 1.01 0.25 0.54 2.19
R 0.0 25 19.17 19.79 1.03 2.37 2.30 0.98 0.19 0.50 2.63
R 0.5 10 22.79 23.21 1.02 2.70 2.71 1.00 0.28 0.58 2,10
R 0.5 25 19.27 19.73 1.02 2.33 2.45 1.05 0.24 0.53 2.21
R 0.7 10 22.83 23.21 1.02 2.73 2.71 0.99 0.28 0.58 2,04

Notes:
All results based on N=2000 respondents, and various number of items.
Exp = Derived from matrix of expected correlations
Obs = Derived from matrix of observed correlations,

Table 12:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Ratio of means and variances of eigenvalues of the jacknifed submatrices
(Ratio = observed / expected)

Eigenvalue I Eigenvalue 2 Eigenvalue 3
Rep r p Mean Var Mean Var Mean Var

B 0.0 10 1.039 0.928 1.023 1.066 3.660 5.473
B 0.0 25 1.049 0.923 1.046 1.032 3.889 4.006
B 0.5 10 1.035 0.922 1.005 0.983 3.526 5.112
B 0.5 25 1.047 0.959 1.064 1.065 3.913 6.538
B 0.7 10 1.036 0.919 1.015 1.072 3.641 5.785

R 0.0 10 1.021 0.975 1.005 0.816 2.202 1.152
R 0.0 25 1.033 0.947 0.976 0.760 2.648 1.670
R 0.5 10 1.018 0.960 1.001 0.785 2.107 1.299
R 0.5 25 1.024 0.997 1.054 0.863 2.227 1.418
R 0.7 10 1.017 0.949 0.991 0.772 2.047 1.102
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Table 13a:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Maximal Standardized Weighted Gap (SWG) and significance according to
three types of thresholds
First Eigenvalue

Significance* No. of items

Rep r p Gap Max(SWG) 2.25 95% 99% Below Above Total

B 0.0 10 0.00012884 4.38366 I 1 1 21 51 72
B 0.0 25 0.00017634 4.77832 i 2 I 33 28 61
B 0.5 10 0.00011606 4.63637 1 1 I 45 27 72
B 0.5 25 0.00017343 1.01824 0 1 I 10 52 62
B 0.7 10 0.00008747 2.41954 1 1 1 26 45 71

R 0.0 10 0.00005516 3.73614 I 1 1 34 38 72
R 0.0 25 0.00025199 0.44202 0 1 1 8 52 60
R 0.5 10 0.00006304 3.83447 1 1 I 32 40 72
R 0.5 25 0.00010094 2.84225 1 1 1 39 22 61
R 0.7 10 0.00006237 0.75571 0 1 1 32 40 72

*Note:
I --> Max(SWG) > Empirical percentile
2--> Max(SWG) > Chebyshev + unimodality
3--> Max(SWG) > Chebyshev

L
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Table 13b:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three

types of thresholds.
Second Eigenvalue

Significance* No. of items

Rep r p Gap Max(SWG) 2.25 95% 99% Below Above Total

B 0.0 10 0.0012185 6.23878 1 3 1 20 52 72

B 0.0 25 0.0025284 6.06745 1 2 1 10 51 61

B 0.5 10 0.0062079 5.52540 1 2 1 69 3 72

B 0.5 25 0.0241364 5.76306 1 3 3 1 61 62

B 0.7 10 0.0053278 6.40449 1 3 2 66 5 71

R 0.0 10 0.0007408 0.16707 0 0 0 21 51 72

R 0.0 25 0.0023976 1.68404 0 3 3 5 55 60

R 0.5 10 0.0059670 4.56087 1 2 1 2 70 72

R 0.5 25 0.0039343 3.44740 1 2 1 4 57 61

R 0.7 10 0.0012628 4.00428 1 3 3 9 63 72

*Note:
I --> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality

3 --> Max(SWG) > Chebyshev
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Table 13c:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds
Third Eigenvalue

Significance* No. of items

Rep r p Gap Max(SWG) 2.25 95% 99% Below Above Total

B 0.0 10 0.056692 4.94463 1 2 1 4 68 72
B 0.0 25 0.170522 5.36876 1 2 1 3 58 61
B 0.5 10 0.015446 4.50512 1 1 0 14 58 72
B 0.5 25 0.240886 4.33449 1 3 3 1 61 62
B 0.7 10 0.017104 3.98031 1 3 1 14 57 71

R 0.0 10 0.045500 4.07539 1 1 1 5 67 72
R 0.0 25 0.045556 4.54326 1 3 3 10 50 60
R 0.5 10 0.015318 1.00964 0 0 0 14 58 72
R 0.5 25 0.021710 0.80738 0 0 0 14 47 61
R 0.7 10 0.022073 1.57497 0 3 2 15 57 72

*Note:
1 -> Max(SWG) > Empirical percentile
2--> Max(SWG) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev

S

4
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FIGURE CAPTIONS

Figure 1: Distribution of SWGs based on the ratio of the second pair of eigenvalues
(Rep=B, r=O.O, p= 1O).

Figure 2: Distribution of SWGs based on the ratio of the second pair of eigenvalues
(Rep=B, r=0.5, p=1O).

Figure 3: Distribution of SWGs based on the ratio of the third pair of eigenvalues
(Rep=B, r=0.7, p=IO).

Figure 4: Distribution of SWGs based on the ratio of the third pair of eigenvalues
(Rep=R, r=-O.O, p=1O).

Figure 5: Distribution of SWGs based on the ratio of the third pair of eigenvalues
(Rep=R, r=0.5, p=lO).

Figure 6: Distribution of SWGs based on the ratio of the third pair of eigenvalues
(Rep=R, r=-0.7, p=10).

Figure 7: Distribution of SWGs based on the ratio of the second pair of eigenvalues
(Rep=B, r=O.O, p=25).

Figure 8: Distribution of SWGs based on the ratio of the second pair of eigenvalues
(Repl=B, r=0.5, p=25).

Figure 9: Distribution of SWGs based on the ratio of the second pair of eigenvalues
(Rep=R, r=O, p=25).

Figure 10: Distribution of SWGs based on the ratio of the second pair of eigenvalues
(Rep=R, r=0.5, p=25).

Figure 11: ROC curves for the ratio of the first and second pair of eigenvalues
(Rep=B, r=O.O, p=10).

Figure 12: ROC curves for the ratio of the first and second pair of eigenvalues
(Rep=B, r=0.5, p=10).

Figure 13: ROC curves for the ratio of the first and third pair of eigenvalues
(Rep=B, r=0.7, p=1O).

Figure 14: ROC curves for the ratio of the first and third pair of eigenvalues
(Rep=R, r=O.O, p=IO).

Figure 15: ROC curves for the ratio of the first and third pair of eigenvalues
(Rep=R, r=O.5, p=1O).

Figure 16: ROC curves for the ratio of the first and third pair of eigenvalues
(Rep=R, r=0.7, p=10).

Figure 17: ROC curves for the ratio of the first and second pair of eigenvalues
(Rep=B, r=0.0, p=25).
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Figure 18: ROC curves for the ratio of the first and second pair of eigenvalues
(Rep=B, r=0.5, p=25).

Figure 19: ROC curves for the ratio of the first and second pair of cigenvalues
(Rep=R, r=-O, p=25).

Figure 20: ROC curves for the ratio of the first and second pair of eigenvalues
(Rep=R, r=0.5, p=2 5).



Figure 1: Distribution of SWGs based on the ratios of the
second pair of elgenvalues
(REP=B R=O P=10)

RL2  SWG2  SWG 2
a 12

1 1,32 0.00
2 1.34 1.43 C
3 1.35 1.50 C
4 1.36 0.63 C
5 1.36 0.88 C
6 1.39 3.53 C
7 1.40 3.05 C
8 1.42 3.23 C
9 1.57 10.38
10 1.57 1.11 *
II 1.58 0.34
12 1.58 0.67 *
13 1.58 0.41 *
14 1.58 0.00
15 1.58 0.31
16 1.58 0.53
17 1.58 0.54
18 1.58 0.11
19 1.58 0.19
20 1.58 0.30 *
21 1.58 0.40
22 1.58 0.75 *
23 1.58 0.60 *
24 1.58 0.12
25 1.58 0.35
26 1.58 0.76 *
27 1.58 0.66
28 1.58 0.25 *
29 1.58 1.14 *
30 1.58 0.55
31 1.58 0.23 *
32 1.58 0.54
33 1.58 0.72 *
34 1.58 0.70 *
35 1.58 1.71 *
36 1.58 0.43
37 1.58 0.26
38 1.58 0.38 *
39 1.58 1.01
40 1.58 1.28
41 1.59 2.50
42 1.59 0.18 *
43 1.59 1.08 *
44 1.59 0.78 *
45 1.59 1.11 *
46 1.59 1.67 *
47 1.59 1.02 *
48 1.59 0.42
49 1.59 0.11
50 1.59 1.93 a
51 1.59 0.69
52 1.59 1.32
53 1.60 2.41
54 1.60 1.05 a
55 1.60 0.92 *
56 1.60 1.47 a
57 1.60 2.61 a
58 1.61 3.40 a
59 1.61 1.48 *
60 1.61 0.40 *
61 1.61 1.44 *
62 1.61 0.55 *
63 1.61 1.00 *
64 1.61 0.67
65 1.62 1.12 a
66 1.62 1.96
67 1.62 0.37 a
68 1.62 1.18
69 1.62 1.53 *
70 1.62 0.45 a
71 1.62 0.43 *
72 1,62 0.57 *
73 1.63 1.92
74 1.63 0.83
75 1.64 2.62 a
76 1.65 2.27 a
77 1.66 1.76 a
78 1.67 1.49 a
79 1.68 1.15 a
80 1.68 0.67



Figure 2: Distribution of SWGs based on the ratios of the
second pair of elgenvalues
(REP=B R=0.5 P=1O)

RL, SWG2  SWG2
0 12

I 1.00 0.00 C
2 1.00 o.13 C
3 .00 0.13 C
4 1.00 0.59 C
5 1.00 1.00 C
6 1.00 0.28 C
7 1.00 0.21 C
8 3.00 1.04 C
9 1.07 7.92
10 1.07 1.63 *
11 1.07 1.60 *
12 1.07 0.50 *

13 1.07 0.81
14 1.07 0.99 *

15 1.07 0.32
16 1.07 1.02 *
17 1.07 0.45
18 1.07 0.95
19 1.07 0.33 *
20 1.07 0.31
21 1.07 0.24 *
22 1.07 1.29 a
23 1.07 0.76 *
24 1.07 0.66 *

25 1.07 0.10
26 1.07 0.34 *

27 1.07 0.79
28 1.07 1.16
29 1.07 1.00
30 1.07 0.09 *

31 1.07 0.07 *
32 1.08 0.92
33 1.08 0.70
34 1.08 0.63
35 1.08 1.12 *
36 1.08 0.20
37 1.08 0.50 *
38 1.08 0.1 1
39 1.08 1.37 *
40 1.08 1.60 *
41 1.08 1.20
42 1.08 1.56 a
43 1.08 0.65 *
44 1.08 1.84 a
45 1.08 0.82
46 1.08 0.96 *

47 1.08 1.79 a
48 1.08 0.76
49 1.08 1.22 a
50 1.08 1.22
51 1.08 2.00 a

52 1.09 0.54
53 1.09 0.90
54 1.09 1.44 a
55 1.09 2.48 a

56 1.0" 1.81 a
57 1 .0. 0.30
58 1.09 2.32 *
59 1.09 1.57 a
60 1.09 1.06
61 1.09 1.39
62 1.10 2.02
63 1.10 1.57
64 1.10 2,41
65 1.10 0.69
66 1.10 0.52
67 1.10 0.77
68 1.10 0.26
69 1,.0 0.80 a
70 1.10 1.03 *

71 1.10 0,99
72 1.30 0.34
73 1.11 1.51 a
74 1.15 2.19
75 3.12 2.07 a
76 1.13 2.98
77 1.13 1.18 *

78 1.13 029
79 1,15 1.94 *

80 1.17 1.62 a



Figure 3: Distribution of SWGs based on the ratios of the
third pair of eigenvalues
IREP:B RA0.7 P=10)

RL-3  SWr 3  SWG 3
a- 12

1 6.10 0.00 C
2 6.11 0.53 C
3 6.21 2.57 C
4 6.21 0.60 C
5 6.41 5.15 C
6 6,49 3.53 C
7 6.49 0.52 C
8 6.69 6.61 C
9 6.83 5.93 5

10 7.01 7.15 *
II 7.04 2.90
12 7.05 1.41
13 7.06 2.23 *

14 7.07 1.74 5

15 7.07 0.93
16 7.07 0.90
17 7.08 1.28 *

.18 7.08 1.14 *
19 7.08 0.80 *

20 7.09 1.37
21 7,09 0.94
22 7.09 0.16
23 7.09 1.10
24 7.09 0.41
25 7.09 0.39
26 7.09 1.54 *
27 7.09 0.59
28 7-09 0.69 *
29 7.10 0.70
30 7.10 0.96 *
31 7.10 0.84
32 7.10 0.19
33 7.10 0.58
34 7.10 1.08
35 7.10 0.85
36 7.10 0.62
37 7,10 1.11
38 7.11 1.03 *
39 7.11 0.63 *

40 7.11 0.37 *

41 7.11 1.56 *
42 7.11 0.55
43 7.11 1,57
44 7.12 1.41 *
45 7.12 1.78 *
46 7.13 1.73 *

47 7.13 1.65
48 7.13 0.73 *
49 7.13 0.22
50 7.14 2.79 *

51 7.15 1.64
52 7.15 2.14 *
53 7.15 0.50
54 7.15 0.55
55 7.16 1L46 *

56 7.16 0.33 *
57 7,16 1.51
58 7.16 1.16 *

59 7.17 0.92 *
60 7.17 0.32 *
61 7.17 1.83 *
62 7.17 0.84
63 7.17 0.38 *

64 7.18 1.65 *

65 7,19 1.64 *
66 7.19 0.39 *

67 7.20 2.22 *
68 7.20 1,43 *

69 7.22 2.05 *
70 7.22 1.66 *

71 7.24 1.81
72 7.28 3.68 *
73 7.30 2.11
74 7.39 4.34 *

75 7.10 4.60 *
76 7.51 1.36 *
77 7.53 1.82
78 7.57 1.90
79 7.77 3.69
80 8,18 3.76



Figure 4: Distribution of SWGs based on the ratios of the
third pair of eigenvolues
(REP=R R=O P=10)

RL3  SWG 3  
SWG,

012

I 8.08 0.00 C
2 8.11 0.94 C
3 8.34 3.70 C
4 8.75 5184 C
5 9.11 6.36 C
6 9.21 3.31 C
7 9.55 7.40 C
8 9.72 5.78 C
9 10.14 9.42
10 10.17 2.43
II 10.18 1.49 *
12 10.18 0.36
13 10,19 1.78 *
14 10.19 0.45
15 10.19 0.49 *
16 10.19 1.07
17 10.19 0.35
18 10.19 0.56
19 10.20 0.60 *
20 10.20 0.92 *
21 10.20 0.32
22 10.20 0.33 *
23 10.20 0.61 *
24 10.20 0.59
25 10.20 0.44
26 10.20 1.04
27 10.20 0.88
28 10.20 0.65
29 10.21 1.17
30 10.21 0.51
31 10.21 0.59 *
32 10.21 1.17
33 10.21 0.43
34 10.21 0.51 *
35 10.21 0.53
36 10.21 0.43 *
37 10.21 0.00
38 10.21 1.20
39 10.22 1.32 *
40 10.22 0.94 *
41 10.22 1.11 *
42 10.22 1.49 *
43 10,23 1.32 *
44 10.23 0.27 *
45 10.23 0.46 *
46 10.23 0.55
47 10.23 1.44 *
48 10.24 1.86 *
49 10.24 0.87
50 10.24 1.58 *
51 10.25 1.20
52 10.25 1.53 *
53 10.25 1.13 *
54 10.25 0.69 *
55 10.26 1.67
56 10.27 2.57,_
57 10.27 0.44
58 10.29 3.01
59 10.30 2.14
60 10.30 0.19 *
61 10.31 2.41
62 10.33 2.79
63 10.34 1.94 •
64 10.37 3.23
65 10.37 1.23
66 10.46 5.69
67 10.49 3.05 *
68 10.50 1.68 *
69 10.52 2.59 *
70 10.53 1.62 *
71 10.54 1.80 *
72 10.56 2.06
73 10.63 3.94 *
74 10.66 2.01
75 10.77 4.28
76 10.87 3.68
77 10.87 0.92 *
78 10.92 1.97 *
79 10.99 2.02 *
80 11.97 5.34



Figure 5: Distribution of SWGs based on the ratios of the
third pair of elgenvalues
(REP=R R=0.5 P=1O)

RLI SWG3  SWG 3
0 12

1 5.37 0.00 C
2 5.54 2.94 C
3 5.55 1.10 C
4 5.89 7.17 C
5 5.91 1.85 C
6 6.09 6.68 C
7 6.28 7.38 C
8 6.35 4.85 c
9 6.63 10.39
10 6.66 3.57
II 6.67 1.06 *
12 6.67 1.30
13 6.68 2.08 *
14 6.68 0.53 a
15 6,68 1.02
16 6.68 0.39 *
17 6.69 2.00 a
18 6.69 0.58
19 6.69 1.23 *
20 6.69 0.41
21 6.69 0.46
22 6.69 0.51
23 6.69 0.30
24 6.69 0.31 *
25 6.69 0.43
26 6.69 0.17
27 6,69 0.57
28 6.69 0.50
29 6.69 0.86
30 6.69 1.43
31 6.70 1.52 *
32 6.70 1.71 a
33 6.70 0.75 • *
34 6.70 0.57 a
35 6.70 1.58
36 6.70 0.33
37 6.70 0.38 *
38 6.70 0.39
39 6.70 1.12 *
40 6.71 1.24
41 6.71 0.79
42 6.71 1.40 *
43 6.71 2.22 a
44 6.71 0.79
45 6.72 1.21 *

46 6.72 1.69 *
47 6.72 1.37
48 6.72 0.80
49 6.72 1.76
50 6.72 0.31 a
51 6.73 2.25 a
52 6.73 0.81 *
53 6.73 3.29 *
54 6.73 1.78 *
55 6.74 0.95
56 6.74 0.24 a
57 6.74 0.93
58 6.74 1.66 *
59 6.74 1.63 a
60 6.75 1.68 *
61 6.78 4.74
62 6.79 3.70 a
63 6.80 2.64
64 6.81 1.67 *
65 6.83 3.64
66 6.84 2.42 *
67 6.85 2.96 a
68 6.86 2.03 a
69 6.88 3.28 a
70 6.89 2.76 a
71 6.93 4.01 a
72 6.95 2.85 a
73 7.05 6.07
74 7.06 1.96
75 7.07 2.26 a

76 7.09 1.90 *
77 7.10 1.19 *
78 7.16 2.98 *
79 7,39 4.85
80 7.52 2.60



Figure 6: Distribution of SWGs based on the ratios of the

third pair of sigonvalues
(REP:R R--0.7 P=10)

RL, SWG3 SWG3
012

1 3.32 0.00 C
2 3.36 1.53 C
3 3.40 1.94 C
4 3.44 2.38 C
5 3.65 6.42 C

6 3.83 6.60 C

7 3.83 1.02 C
8 3.84 1.29 C
9 3.95 6.43

10 3.97 2.55
II 3.97 1.36 *

12 3.97 0.59 *

13 3.97 0.44 *

14 3.98 2.26 5

15 3.98 0.90
16 3.99 1i66
17 3.99 1.17 *
18 3.99 1.28 *
19 3.99 0.48
20 3.99 0.88
21 4.00 1.35 5

22 4.00 1.37 *

23 4.00 0.53
24 4.00 0.76
25 4.00 0.77
26 4.00 0.55
27 4.00 0.00 *
28 4.00 0.97 *

29 4.00 0.80 *
30 4.00 1.39
32 4.00 0.81 *
32 4.00 0.04
33 4.01 1.16 5

34 4.01 058 *

35 4.01 0.58 *
36 4.01 0.58
37 4.01 0.12 *

38 4.01 0.58
39 4.01 0.84
40 4.01 0.84 *

41 4.01 1.02 *

42 4.01 0.84
43 4.01 0.16
44 4.01 1.67
45 4.01 0.81 *

46 4.01 1.01
47 4.02 0.83
48 4.02 1.04
49 4.02 1.52 *

50 4.02 1.00
51 4.02 1.52 *

52 4.03 1.89
53 4.03 1.13 *

54 4.03 1.38
55 4.03 1.25
56 4.03 1.65
57 4.04 2.44 *

58 4.04 1.72 *
59 4.05 1.50 *

60 4.05 1.94 *

61 4.05 0.96
62 4.06 2.50 *
63 4.06 0.86
64 4.07 2.52 *

65 4.08 2.09 *

66 4.09 2.82 *

67 4.10 2.21 *

68 4.11 2.45
69 4.12 1.95 *
70 4.14 3.13 *

71 4.14 2.68 *
72 4.15 0.89 *

73 4.20 4.56
74 4.21 1.93 a

75 4.22 1.18 *

"76 4.22 0.64 *
77 4.25 2.35 a
78 4.26 1.30 a
79 4.35 2.94 *

80 4.61 3,69



Figue 7: Distribution of SWGs based on the ratios of the
second pair of elgenvalues
IREP=B R=O P=25)

RI, SWG2  SWG2

12
1 3.57 0.00 C
2 3.58 0.57 C
3 3.60 1.15 C
4 3.61 0.59 C
5 3.62 1.34 C
6 3.65 2.37 C
7 3.66 1.24 C
8 3.67 1.80 C
9 3.69 1.89 C
10 3.70 1.88 C
!1 3,73 3.02 C
12 3.76 3.36 C
13 3.77 1.79 C
14 3.77 1.51 C
15 3.80 3.59 C
16 3.81 1.30 C
17 3.81 1.07 C
18 3.82 1.99 C
19 3.83 2.53 C
20 3.89 5.57 C
21 3.92 4.19 *
22 3.92 0.28
23 3.92 0.49
24 3.92 0.29 *
25 3.92 0.46 *
26 3.92 0.81 *
27 3.92 0.21 *
28 3.92 0.48
29 3.92 0.75
30 3.92 0.52 *
31 3.92 0.32
32 3.92 0.87 *
33 3.92 0.50
34 3.93 0.83 *
35 3.93 0.45
36 3.93 0.89 *
37 3.93 0.65 *
38 3.93 0.83
39 3.93 0.88
40 3.93 0.38
41 3.93 0.56
42 3.93 0.94 *
43 3.93 1.38 *
44 3.93 0.64 *
45 3.93 0.55
46 3.94 1.96 *
47 3.94 1.45
48 3.95 2.61
49 3.95 1.16
50 3.96 1.77 *
51 3.96 0.76
52 3.96 0,37 *
53 3.96 0.53
54 3.96 1.43 *
55 3.97 2.22 *
56 3.98 1.91
57 3.98 0.46
58 3.98 1.77 *
59 3.99 1.46 *
60 3.99 1.30 *
61 4.00 2.75 *
62 4.01 1.87 *
63 4,02 2.03
64 4.02 1.25 *
65 4.02 1.44 *
66 4.03 1.73
67 4.03 0.05
68 4.04 1.63
69 4.04 0.13 5

70 4.04 1.48
71 4.04 0.31
72 4.05 0.89 *
73 4.06 1.60 *
74 4.08 2.38 *
75 4.08 0.55
76 4.13 2.94 *
77 4.18 2.51 *
78 4.19 1.22
79 4.25 2.08
80 4.28 1.07



Figure 8: Distribution of SWGs based on the ratios of the
second pair of eigenvalues
(REP=B R=0.5 P=25)

SL2  SWG2  SWG 2
0 12

I 2.42 0.00 C
2 2,44 1.04 C
3 2.45 0.89 C
4 2.47 1.65 C
5 2.49 2.18 C
6 2.30 1.34 C
7 2.51 1.87 C
8 2.53 2,57 C
9 2.53 0.91 C
10 2.53 0.53 C
il 2.53 0.37 C
12 2.54 1.99 C
13 2.54 0.66 C
14 2.57 3.96 C
15 2.58 2.85 C
16 2.58 1.76 C
17 2.58 0.88 C
18 2.60 3.33 C
19 2.62 3.98 C
20 2.63 2.25 C
21 2.63 2.44 *

22 2.64 2.30
23 2.64 0.71 *
24 2.64 0.50
25 2.64 0.79 *

26 2.64 0.65 *

27 2.64 0.52 *

28 2.64 0.57
29 2.64 0.38
30 2.64 0.58 *
31 2.64 0.37 *

32 2.64 1.03 *

33 2.65 0.97 *
34 2.65 0.21
35 2.65 0.42
36 2.65 0.37 *
37 2.65 0.64 *

38 2.65 0.32 *

39 2.65 0.22
40 2.65 0.89 *

41 2.65 0.52 *

42 2.65 0.91 *

43 2.66 2.96 *

44 2.66 0.00
45 2.66 0.51 *
46 2.6o 2.01
47 2.66 0.32
48 2.66 0.83
49 2.66 1.92
50 2,66 0.58
51 2.67 1.13 *

52 2.67 1.82 *

53 2.67 1.26 *
54 2.67 0.90 *
55 2.67 0.56 *

56 2.68 2.79
57 2.68 1.97 *

58 2.69 1.29
59 2.69 1.85
60 2.69 0.70
61 2.69 0.82 *

62 2.69 1.53
63 2.70 2.09 *
64 2.70 1.68
65 2.70 0.29
66 2.71 1.02 *
67 2.71 0.52
68 2.71 0.97 *

69 2,72 2.14 *

70 2.72 1.40 *

71 2.72 1.17 *

72 2.73 1.19 *
73 2.73 1.07 *

74 2.74 2.38 *
75 2.77 2.69 *

76 2.78 1.31 *

77 2.80 2.38
78 2.83 2.15 *

79 2.84 0.97 *

80 2.92 2.01 *



Figure 9: Distribution of SWGs based on the ratios of the
second pair of elgenvalues
(REP=R R--O P=25)

RI-2  SWG2  SWG 2
02

1 2.40 0.00 C
2 2.40 0.31 C
3 2.41 0.46 C
4 2.41 0.57 C
5 2.43 1.86 C
6 2.44 1.29 C
7 2.44 0.75 C
8 2.46 2.31 C
9 2,46 0.76 C
10 2.46 0.80 C
11 2.47 1.89 C
12 2.48 1.59 C
13 2.49 1.94 C
14 2.49 0.90 C
15 2.49 0.41 C
16 2.49 1.11 C
17 2.51 3.60 C
18 2.52 1.57 C
19 2.53 2.26 C
20 2.56 4.44 C
21 2.60 5.17 *
22 2.60 0.96 *
23 2.60 0.81 *
24 2.60 0.49 *
25 2.60 0.57 *
26 2.60 0.84 *
27 2.60 0.30
28 2.61 0.11 *
29 2.61 0.28
30 2.61 0.99 *
31 2.61 0.76 *
32 2.61 0.63 *
33 2.61 0.72 *
34 2.61 0.33
35 2.61 0.55 *
36 2.61 0.57 *
37 2.61 0.78 *
38 2.61 0.35
39 2.61 0.84
40 2.61 0.28 *

41 2.61 0.13 *
42 2.61 0.97 *
43 2.62 1.69 *
44 2.62 0.95 *
45 2.62 0.96
46 2.62 1.38 *
47 2.62 1.36
48 2.62 0.36 *
49 2.62 1.34
50 2.63 1.59 *

51 2.63 1.09 *

52 2.63 2.13 *

53 2.65 3.33
54 2.65 1.03 *
55 2.65 0.04 *
56 2.65 1.86
57 2.66 0.54 *
58 2.66 1.07 *
59 2.66 0,84 *

60 2.66 0.54 *
61 2.66 0.38
62 2.66 1.24 *
63 2.66 0.09
64 2.66 1.18
65 2.66 0.56 *
66 2.66 0.19 *
67 2.66 0.51
68 2.67 0.81 *
69 2.68 2.32 *
70 2.69 2.55 *
71 2.69 0.45
72 2.70 0.86 *

73 2.70 1.03
74 2.70 0.85 *
75 2,71 1.35
76 2.73 1.95 *
77 2.73 0.86
78 2.76 1.69 *
79 2.77 1.09
80 2.81 1.21



Figure 10: Distribution of SWGs based on the ratios of the
second pair of eigenvalues
(REP=R RzO.5 P.26)

RL.,SWG2  SWG2
n% w- sw,%

0 12

1 1,61 0.00 C
2 1,63 1.24 C
3 1.64 1.61 C
4 1.65 0.88 C
5 1.65 1.25 C
6 1.65 1.03 C
7 1.65 0.88 C
8 1.66 0.97 C
9 1.66 0.66 C
10 1.66 1.60 C
11 1.66 1.03 C
12 1,67 3.29 C
13 1.67 0.98 C
14 1.67 0.88 C
15 1.68 2.15 C
16 1.68 1.87 C
17 1.68 1.62 C
18 1.69 3.04 C
19 1.69 2.22 C
20 1.73 6.79
21 1.73 1.20 C
22 1.73 1.86 *
23 1.73 0.31
24 1.73 1.64
25 1.73 0.36 *
26 1.73 0.76
27 1.73 1.27 *
28 2.73 1.14
29 1.73 0.28
30 1.73 0.23
31 1.74 1.35 *
32 1.74 0.29 *
33 1.74 1.57
34 1.74 0.77 *
35 1.74 1.45
36 1.74 0.79
37 1.74 2.20 *
38 1.74 0.60
39 1.74 1.74 *
40 1.74 1.67 *
41 1.74 1.08 *
42 1.74 0.31 *
43 1.74 1.05 *
44 2.74 1.28 *
45 1.74 0.52 *
46 1.75 1.66 *
47 1.75 0.79 *
48 1.75 0.46
49 1.75 1.32 *
50 1.75 i. 16
51 1.75 0.08
52 1.75 1.41 *
53 1.75 2.23 *
54 1.75 0.67 *
55 1.75 0.85
56 1.75 0.46 *
57 1.75 1.48 *
58 1.75 1.00 *
59 2.76 1.82 *
60 1.76 .213
61 1.76 3.59
62 1.77 0.87
63 1.77 2.65
64 1.77 0.34
65 1.77 1.17
66 1.77 1.03
67 1.77 1.26 9

68 1.78 1.89
69 1.78 1.49
70 2.78 1.53
71 1.79 2.56
72 2.81 3.68
73 1.81 0.80 *
74 1.81 0.29 *
75 1.821 .08 *

76 1.82 2.21
77 1.83 1.26 *
78 1.83 1.02 *
79 1.83 0.45
80 1.86 1.75



Figure ii: ROC curves for the ratio of the first and second pairs of elgenvalues
REPB R=O.O P=10
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Figure 12: ROC curves for the ratio of the first and second pairs of elgenvalues
REP=B R=0.5 P=1O
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Figure 13: ROC curves for the ratio of the first and third pairs of eigenvalues
REP=B R=0.7 P=10
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Figure 14: ROC curves for the ratio of the first and third pairs of eigenvalues
REP=R R=0.0 P=10
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Figure 15: ROC curves for the ratio of the first and third pairs of elgenvalues
REP=R R=0.5 P=10
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Figure 16: ROC curves for the ratio of the first and third pairs of 3igenvalues
REP=R R=0.7 P=10
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Figure 17: ROC curves for the ratio of the first and second pairs of eigenvalues
REP=B R=O.0 P=25
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Figure i8: ROC curves for the ratio of the first and second pairs of eigenvalues
REP=B R=0.5 P=25
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Figure 19: ROC curves for the ratio of the first and second pairs of eigenvalues

REP=R R=O.O P=25
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Figure 20: ROC curves for the ratio of the first and second pairs of elgenvalues

REP=M R=0.5 P--25
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APPENDIX 1:

Parameters of the items used in
the R tests

Item a b c

00t 0.70 -1.97 0.00
002 1.01 -1.26 0.08
003 1.19 -1.15 0,02
004 0.81 -0.64 0.28
005 0.57 -1.41 0.03
006 0.91 -1.07 0.00
007 0.60 -1.50 0.06
008 0.54 -1.06 0.20
009 1.25 -2.06 0.03
010 1.30 -1.45 0.00
011 1.13 -1.21 0,02
012 1.21 -0.89 0.09
013 1.01 -0.67 0.11
014 1.82 -0.54 0.16
O0s 1.36 -0.67 0.14
016 1.57 -0.06 0.34
017 2.02 -0.79 0.23
018 0.72 -0.74 0.16
019 1.06 -0.63 0.09
020 1.50 0.06 0.22
021 1.57 0.93 0.19
022 1.23 1.19 0.19
023 0.86 0.53 0.27
024 0.81 0.65 0.27
025 1.38 0.11 0.20
026 0.72 0.22 0.27
027 1.70 0.34 0.22
026 1.55 0.48 0.27
029 1.35 0.46 0.30
030 1.79 0.98 0.19
031 1.62 0.41 0.17
032 2.44 0.84 0.19
033 2.44 1.02 0.17
034 2.44 1.61 0.31
035 2.44 0.87 0.23
036 1.40 0.53 0.20
037 0.81 0.41 0.20
038 1.43 0.79 0.20

039 1.23 1.34 0.23
040 0.79 1.39 0.17
041 0.57 -1.87 0.03
042 0.80 -1.66 0.02
043 1.07 -1.38 0.00
044 0.85 -1.06 0.00
045 1.32 -0.17 0.28
046 1.10 -1.07 0.08
047 0.71 -0.67 0,08
048 1.31 -1.17 0.02
049 1.73 -1.22 0.03
050 160 -1.29 0.03
051 1.03 -1.13 0.03
052 1.21 -0.90 0.00
053 0.63 -0.02 0.09
054 1.14 -0.19 0.19
055 0.85 -0.33 0.08
056 1.14 0.20 0.16
057 0.71 0.36 0.19
058 1.36 -0.81 0.06
059 0.95 -0.27 0.09
060 1.29 0,43 0.31
061 0.85 0.28 0.13
062 1.89 0.88 0.17
063 0.73 0.77 0.17
064 0.97 0.56 0.30
065 1.41 0.45 0.16
066 1.82 0.66 0.30
067 1.70 -0.06 0.19
068 1.70 0.35 0.21
069 1.48 099 0.16
070 1.72 093 0.19
071 1.80 0.75 0.16
072 2.47 1.09 0.22
073 1.56 1.12 0.31
074 2.04 1.20 0.33
075 1 99 1.29 022
076 1.09 0.80 0.27
077 11O 0.61 0.17
078 1,82 1.19 0.22
079 2.47 1.24 030
010 2.04 1.61 0.17
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APPENDIX 2:

Parameters of the items
used in the B tests

Item a b c

I 1.41 0.42 0.25

2 1.00 0.06 0.28

3 t.19 0.40 0.20

4 1,35 1.61 0.27
5 1.35 -0.30 0.25

6 1.53 1.15 0.14

7 1.45 0.60 0.10

8 1.09 0.68 0.22
9 0.93 0.13 0.26

10 0.19 -1.01 0.20

I I 1.25 -0.51 0.23
12 1.37 -0.90 0.30
13 0.88 -0.40 0.22

14 1.30 -0.21 0.20
IS 0.81 0.77 0.22

16 1.02 -0.69 0.28

17 0.96 0.81 0.11
18 0.99 0.48 0.28

19 1.42 0.84 0.12

20 0.62 0.36 0.20
21 1.19 1.17 0.21

22 1.14 0.66 0.10

23 0.96 -0.02 0.13
24 1.23 -0.19 0.19

25 0.89 -3.20 0.13
26 1.12 -0.79 0.20

27 0.65 0.72 0.26
28 0.83 -0.29 0.17

29 0.90 -1.14 0.24
30 1.27 -0.85 0.23
31 0.90 -0.25 0.24
32 1.32 -116 0.24
33 1.42 -0,21 0.18
34 1.45 1.44 0.10
33 1.30 1.48 0.14
36 1.17 -0.11 0.29
37 1.39 1,99 0.20

38 0.78 1.73 0.14
39 1.48 -0.10 0.23
40 1.31 0.72 0. 12
41 1.54 0.10 0.15
42 1.54 1.50 0.17
43 1.13 0.10 0.24
44 1.27 -0.39 0.10
45 0.84 -II. 0.29
46 1.21 -0.12 0.25
47 1.06 0.53 0.28
48 1.19 -1.32 0.22
49 0.85 -0.42 0.14
50 0.65 0.81 0.23
31 1.32 1.30 0.27
52 1.30 1.20 0.14
53 0.79 -1.49 0.24
54 1.07 -1.96 0.17
55 1.31 0.47 0.10
56 0.93 1.25 0.19
57 1.08 0.69 0.28
58 1.27 -0.18 0.14
59 1,26 1.02 0.20
60 1.06 0.41 0.20
61 0.93 0.10 0.27
62 1.24 -0.10 0.16
63 1.20 -0.21 0.12

64 1.40 0.19 0.14
65 0.93 0,92 0.12
66 1.08 1.60 0.17
67 0.75 0.30 0.14
68 1.26 -0.13 0.19
69 1.04 -0.26 0.27
70 0.74 1.38 0.20
71 1.44 -1.51 0.26
72 0.39 0.38 0.18
73 0.73 0.85 0.28
74 0.95 0.25 0.24
75 0.77 -0.16 0.22
76 0.86 -1,70 022
77 1.29 0.74 029
78 1.55 0.14 019
79 135 -0.39 020
SO 1.26 0.80 O.17
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APPENDIX 3:

Mean values (and standard deviations) of the estimates of
parameter a for items loaded on the dominant (main) and the
nuisance (cont.) dimension

p= 10 p= 25  p= 50

main cont. main cont. main cont.
(n=72) (n=8) (n=60) (n=20) (n=40) (n=40)

Rep= R

True 1.31 1.45 1.31 1.38 1.29 1.36
(.51) (.56) (.50) (.55) (.48) (.54)

P=0 1.24 1.37 1.23 1.30 1.20 1.29
(.47) (.47) (.45) (.55) (.42) (.52)

r=.7 1.24 .70 1.20 .80 .97 1.06
(.50) (.15 (.45) (.22) (.29) (.38)

r=.5 1.23 .53 1.21 .60 .86 .96
(.48) (.12) (.45) (.14) (.23) (.34)

r=.0 1.25 .57 1.25 .74 .27 1.17
(.49) (.77) (.51) (.88) (.01) (.47)

Rep= B

True 1.13 1.05 1.12 1.12 1.13 1.12
(.25) (.21) (.25) (.24) (.25) (.24)

p=O 1.03 .92 1.02 1.02 1.05 .99
(.26) (.16) (.26) (.25) (.28) (.23)

r=.7 1.03 .57 .99 .58 .82 .83
(.25) (.11) (.23) (.11) (.21) (.17)

r=.5 1.03 .44 1.00 .51 .83 .67
(.25) (.06) (.25) (.10) (.16) (.14)

r=.O 1.02 .28 1.00 .93 .92 .27
(.28) (.0) (.26) (.99) (.19) (.02)
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APPENDIX 4:

Mean values (and standard deviations) of item reliabilities
for items loaded on the dominant (main) and the nuisance
(cont.) dimension

p= 10 p=25 p=50

main cont. main cont. main cont.
(n=72) (n=8) (n=60) (n=20) (n=40) (n=40)

Rep = R

True .37 .44 .37 .36 .39 .35
(.13) (.15) (.14) (.12) (.13) (.14)

p=O .34 .42 .36 .35 .37 .34
(.14) (.16) (.15) (.13) (.14) (.15)

r=.7 .36 .22 .36 .21 .33 .28
(.14) (.11) (.15) (.08) (.13) (.11)

r=.5 .36 .12 .36 .12 .29 .24
(.14) (.06) (.15) (.04) (.12) (.10)

r=.0 .37 .03 .36 .02 .04 .30
(. 14) (.02) (. 15) (.01) (.01) (. 13)

Rep = B

True .34 .37 .35 .31 .35 .33
(.12) (.06) (.11) (.13) (.12) C.11)

p--O .32 .35 .33 .30 .34 .31
(.12) (.05) (.I11) (.14) (.12) (.12)

r=.7 .33 .18 .32 .17 .27 .26
(.12) (.05) (.12) (.09) 11I) (.10)

r=5 .33 .10 .32 .11 .22 .25
(.12) (.01) (.12) (.04) (.10) (.08)

r=.0 .33 .02 .32 .01 .04 .28
(12) (.01) (.12) (.01) (.02) (.1 I)
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APPENDIX 5a:

Revised Modified Parallel Analysis (RMPA) of 18 tests:
Proportion of Standardized Weighted Gaps (SWGs)
above the 2.25 detection threshold

P
First EV.

10 25 50 Mean

R

0 0.025 0.025 0.019 0.023

5 0.000 0.013 0.013 0.009

7 0.025 0.006 0.000 0.010

Mean 0.017 0.015 0.011 0.014

P
Second EV.

10 25 50 Mean

R

0 0.101 0.127 0.158 0.129

5 0.057 0.120 0.051 0.076

7 0.063 0.082 0.038 0.06 1

Mean 0.074 0.110 0.082 0.089

P
Third EV.

10 25 50 Mean

R

0 0.209 0.146 0.241 0.199

5 0.171 0.133 0.209 0.171

7 0.184 0.139 0.152 0.158

Mean 0.188 0.139 0.201 0.176
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APPENDIX 5b:

Revised Modified Parallel Analysis (RMPA) of 18 tests:
Proportion of Standardized Weighted Gaps (SWGs)
above 95th empirical percentile

P
First EV.

10 25 50 Mean

R

0 0.051 0.051 0.051 0.051

5 0.051 0.051 0.051 0.051

7 0.051 0.051 0.051 0.051

Mean 0.051 0.051 0.051 0.051

P
Second EV.

10 25 50 Mean

R

0 0.146 0.241 0.184 0.190

5 0.139 0.184 0.114 0.146

7 0.089 0.133 0.082 0.101

Mean 0.125 0.186 0.127 0.146

P

Third EV.
10 25 50 Mean

R

0 0.335 0.222 0.184 0.247

5 0.348 0.158 0.228 0.245

7 0.228 0.184 0.234 0.215

Mean 0.304 0.188 0.215 0.236
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APPENDIX 5c:

Revised Modified Parallel Analysis (RMPA) of 18 tests:
Proportion of Standardized Weighted Gaps (SWGs)
above 95th percentile (Chebyshev inequality + unimodality)

P
First EV.

10 25 50 Mean

R

0 0.006 0.019 0.019 0.015

5 0.000 0.013 0.006 0.006

7 0.006 0.006 0.000 0.004

Mean 0.004 0.013 0.008 0.008

P
Second EV.

10 25 50 Mean

R

0 0.057 0.076 0.152 0.095

5 0.057 0.095 0.032 0.061

7 0.025 0.044 0.019 0.029

Mean 0.046 0.072 0.068 0.062

P
Third EV.

10 25 50 Mean

R

0 0.171 0.089 0.209 0.156

5 0.184 0.095 0.114 0.131

7 0.127 0.114 0.120 0.120

Mean 0.161 0.099 0.148 0.136

4,
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APPENDIX 5d:

Revised Modified Parallel Analysis (RMPA) of 18 tests:

Proportion of Standardized Weighted Gaps (SWGs)

above 95th percentile (Chebyshev inequality)

P
First EV.

10 25 50 Mean

R

0 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000

p
Second EV.

10 25 50 Mean

R

0 0.006 0.044 0.101 0.050

5 0.013 0.032 0.000 0.015

7 0.006 0.006 0.000 0.004

Mean 0.008 0.027 0.034 0.023

p
Third EV.

10 25 50 Mean

R

0 0.076 0.032 0.089 0.066

5 0.095 0.044 0.057 0.065

7 0.089 0.057 0.013 0.053

Mean 0.087 0.044 0.053 0.061
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APPENDIX 5e:

Revised Modified Parallel Analysis (RMPA) of 18 tests:

Proportion of Standardized Weighted Gaps (SWGs)

above 99th empirical percentile

P

First EV.
10 25 50 Mean

R

0 0.013 0.013 0.013 0.013

5 0.013 0.013 0.013 0.013

7 0.013 0.013 0.013 0.013

Mean 0.013 0.013 0.013 0.013

P
Second EV.

10 25 50 Mean

R

0 0.044 0.063 0.127 0.078

5 0.108 0.070 0.044 0.074

7 0.013 0.044 0.057 0.038

Mean 0.055 0.059 0.076 0.063

P
Third EV.

10 25 50 Mean

R

0 0.146 0.076 0.139 0.120

5 0.272 0.108 0.127 0.169

7 0.114 0.114 0.171 0.133

Mean 0.177 0.099 0.146 0.141
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APPENDIX 5f:

Revised Modified Parallel Analysis (RMPA) of 18 tests:
Proportion of Standardized Weighted Gaps (SWGs)
above 99th percentile (Chebyshev inequality + unimodality)

P

First EV.
10 25 50 Mean

R

0 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000

P
Second EV.

10 25 50 Mean

R

0 0.006 0.013 0.044 0.021

5 0.006 0.006 0.000 0.004

7 0.000 0.000 0.000 0.000

Mean 0.004 0.006 0.015 0.008

Third EV.
10 25 50 Mean

R

0 0.044 0.000 0.057 0.034

5 0.051 0.013 0.006 0.023

7 0.057 0.006 0.006 0.023

Mean 0.051 0.006 0.023 0.027



APPENDIX 5g:

Revised Modified Parallel Analysis (RMPA) of 18 tests:
Proportion of Standardized Weighted Gaps (SWGs)
above 99th percentile (Chebyshev inequality)

P
First EV.

10 25 50 Mean

R

0 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000

Mean 0,000 0.000 0.000 0.000

P
Second EV.

10 25 50 Mean

R

0 0.006 0.000 0.013 0.006

5 0.006 0.006 0.000 0.004

7 0.000 0.000 0.000 0,000

Mean 0.004 0.002 0.004 0.003

P
Third EV.

10 25 50 Mean

R

0 0.013 O.00q 0.019 0.011

5 0.032 0.000 0.0(X) 0.011

7 0.013 0.000 0.000 0.004

Mean 0.019 0.000 0.006 0.009
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